
Global Sensitivity Analysis in High Dimensional
Parameter Spaces

A Tensor-Network Approach

Hongli Zhao, University of Chicago CCAM, IL, USA

Daniel Tartakovsky, Stanford ERE, CA, USA

May 2023

Global Sensitivity Analysis

▶ Forward model:
x 7→ f (x) (1)

where:

▶ x = (x1, . . . , xd) ∈ K d unit hypercube. Components are
assumed to be uniformly random and independent.

▶ f is assumed to be real-valued and square-integrable.

▶ Would like to quantify relative importance of components of x.

▶ Guide design of numerical simulations
▶ Identify chaotic parameter regimes in dynamical systems

▶ f admits a unique decomposition (Sobol’ 1993) :

f (x1, . . . , xd) = f0 +
d∑

i=1

fi (xi)+
∑

1≤i<j≤d

fij (xi , xj)+ · · ·+ f1,...,d (x1, . . . , xd) (2)

with: 
f0 = E

[
f (x)

]
fi (xi) = E

[
f (x)|xi

]
− f0

fij (xi , xj) = E
[
f (x)|xi , xj

]
− fi (xi)− fj (xj)− f0

· · ·

(3)

▶ By construction for multi-indices I,J :

E
[
fI
]
= 0,E

[
fI fJ

]
= 0 (4)

such that:

Var[f] =
d∑

i=1

Var[fi] +
∑

1≤i<j≤d

Var[fij] + · · ·+ Var[f1,...,d] (5)

and:

1 =
d∑

i=1

Var[fi]

Var[f]
+

∑
1≤i<j≤d

Var[fij]

Var[f]
+ · · ·+

Var[f1,...,d]

Var[f]
(6)

▶ Define: SI = Var[fI]
Var[f]

.

Sobol’ indices via Polynomial Chaos Expansion

▶ In the absence of an analytic model f , we must resort to Monte Carlo integration
to approximate SI , which is computationally demanding when |I| is large.

▶ As a Monte Carlo approximation, ŜI could be negative.

▶ (Karniadakis 2003) Approximate y = f (x) with a truncated series of
orthonormal basis functions:

yPCE =
∑

i1,...,id

Ci1,...,idΦi1,...,id (x1, . . . , xd) (7)

where the multivariate basis can be constructed as a product of 1d basis
functions (e.g. Legendre polynomials):

Φi1,...,id (x1, . . . , xd) =
d∏

j=1

ϕij (xj)

in particular:
E
[
ΦIΦJ

]
= 0,E

[
Φ2

I
]
= 1

▶ (Sudret 2007) May establish connections between the PCE expansion and
Sobol’ indices.

E
[
yPCE

]
=

∑
i1,...,id

Ci1,...,idE
[
Φi1,...,id

]
= C0,...,0 (8)

Var[yPCE] = E
[
y2
PCE

]
− E

[
yPCE

]2
=

∑
i1,...,id

C2i1,...,id

∫
Kd

Φ2
i1,...,id

dx− C20,...,0

=
∑

i1,...,id

C2i1,...,id − C
2
0,...,0

E
[
yPCE|xj

]
=

∑
i1,...id

Ci1,...,id
∫
Kd−1

Φi1,...,id (x\j , xj)dx\j =
∑
ij

C0,...,0,ij ,0,...,0ϕij (xj)

(9)

Var[E
[
yPCE|xj

]
] =

∑
ij

C20,...,ij ,0,...,0 − C
2
0,...,0

▶ Likewise:
Var[E

[
yPCE|xI

]
] =

∑
I
C20,...,I,...,0 − C

2
0,...,0

▶ Variable dependence is captured in C → How to find C?

▶ Galerkin projection:

Ci1,...,id = E
[
fΦi1,...,id

]
≈

n1∑
j1=1

· · ·
nd∑

jd=1

wi1 · · ·wid f (xj1 , . . . , xjd)Φi1,...,id (xj1 , . . . , xjd)

▶ Regression:

Ĉ = argmin
C

1

M

M∑
k=1

(
yk −

∑
i1,...,id

Ci1,...,idΦi1,...,id (xk)

)2

+ λ∥C∥2F

for queried points {(xk , yk)}Mk=1.

▶ In either case, O(nd) complexity is incurred.

Tensor-Train (TT) Format

▶ C is a d-dimensional tensor, the tensor-train format gives the following tensor
decomposition:

C[i1, . . . , id] ≈ C1[1, i1, :] · C2[:, i2, :] · · · Cd [:, id , 1]

=

r1∑
α1=1

r2∑
α2=1

· · ·
rd−1∑

αd−1=1

C1[α0, i1, α1]C2[α1, i2, α2] · · · Cd [αd−1, id , αd]

with α0 = αd = 1. (r1, . . . , rd−1) are the TT ranks.

▶ Tensor diagrams:

▶ With the TT decomposition of C, the PCE model is now:

▶ Allows continuous evaluations as a surrogate model.

▶ If r is low, the complexity is now O(dnr2).

Gradient-based optimization

▶ Define loss function:

L(C1, . . . , Ck) =
1

M

M∑
i=1

(
yi−

∑
i1,...,id

[C1[1, i1, :] · · · Cd [:, id , 1]Φi1,...,id (xk)

)2

(10)

▶ Initialize with prespecified ranks
▶ In each iteration, compute ∂L

∂Ck
and optimize each TT core Ck by:

C(t+1)
k ← C(t)k − η

(
∂L
∂C(t)k

)
▶ Gradient-descent:

▶ Two-site strategy (Stoudemire 2016, NeurIPS):

▶ TT ranks can be adapted by applying SVD after every k iterations

Example 1: Ishigami Function

The Ishigami function is defined in 3 dimensions as:

y = f (x) = sin(x1) + 7 sin2(x2) + 0.1x43 sin(x1), x ∈ [−π, π]3

The detailed comparison of first-order indices is as follows:

Index Analytic FTT
S1 0.3138 0.3139
S2 0.4424 0.4423
S3 0 2.163× 10−6

S12 0 8.731× 10−7

S23 0 1.716× 10−5

S13 0.2431 0.2437
S123 0 3.204× 10−5

Example 2: Sobol’ Function (d = 8)

The Sobol’ function is a well-known test problem in GSA with decaying first-order
indices, defined as the following:

y = f (x) =
d∏

i=1

|4xi + 2|+ ai

1 + ai

where a = [a1, · · · , a8] = [1, 2, 5, 10, 20, 50, 100, 500], and supported on [0, 1]8. The
Sobol’ indices can be determined from the following formulae:

D =
d∏

i=1

(Di + 1)− 1

where Di =
1

3(ai+1)2
, and Si = Di/D.

Figure: 5× 103 data points, final training MSE = 4.1914× 10−6, in 4324
iterations.

The detailed comparison of first-order indices is as follows:

Index Analytic FTT
S1 0.6037 0.5814
S2 0.2683 0.2650
S3 0.0671 0.0677
S4 0.02 0.0197
S5 0.0055 0.00631
S6 0.0009 0.0010
S7 0.0002 0.00025
S8 0 2.238× 10−5

Example 3: Doyle-Fuller-Newman battery discharge time
(d = 14)

▶ Baseline parameters are taken from Chen et al. (2020)

Figure: Visual chart of DFN model (Onori 2019)

▶ 14 parameters were investigated by varying around baseline values ±5%, with
cutoff voltage at 2.7V and discharge time recorded. Data points were simulated
using the COMSOL framework.

Figure: Left: FTT emulator fitted with 2× 104 data points. Right: MC
estimator using 1.3× 105 points.

Future Directions

▶ Ensemble estimator

▶ Divide data into ⌊M/P⌋-sized partitions and compute P
emulators

f (i)(x) =
∑
I

C(i)
I ΦI(x)

and form:

f (x) =
1

P

∑
I

f (i)(x)

▶ If computed separately:

SI =

∑P
i=1 D

(i)
I∑P

i=1 D
(i)

▶ Density estimation and time-dependent processes.

Thank you for your attention!

Hongli Zhao, honglizhaobob@uchicago.edu

