Continuous Interpolation and Sampling of High-Dimensional Probability Distributions

Hongli Zhao

January 19, 2022

Hongli Zhao [Continuous Interpolation and Sampling of High-Dimensional Probability Distributions](#page-21-0) 1/22

4日下

 QQ

Why Tensor-Networks

Tensor-Network offers a representation of quantum many-body states:

$$
|\Psi\rangle = \sum_{i_1\cdots i_N} C_{i_1\cdots i_N} |i_1\rangle \otimes \cdots \otimes |i_N\rangle
$$

an N -particle, p -state system has ρ^N coefficients.

- **•** Premise: particles have local interactions; the system can be well-approximated with fewer indices.
	- ► (simplified Ising model) $\exp\Bigl(-\frac{1}{\mathcal{T}}\sum_{i,j}J_{ij}\sigma_i\sigma_j\Bigr)$

Tensor-Train / Matrix Product States is an example of a linear tensor-network

- \blacktriangleright represents a product measure exactly
- \triangleright can show denseness in Hilbert space
- First construed in 1992 [Fannes, Nachtergaele, Werner] 1 and 1993 [Klümper, Schadschneider, Zittartz]²
	- Rediscovered in 2011 by Ivan Oseledets³

 $1(1992)$ Finitely correlated pure states. and their symmetries

 $^{2}(1993)$ Matrix Product Ground States for One-Dimensional Spin-1 Quantum Antiferromagnets

 $3(2011)$ Tensor-Train Decomposition

Graphical Representation of a Tensor

Figure: Tensors as nodes and edges Figure: Tensor contractions as connecting edges

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

э

 QQ

Review of Tensor-Train Decomposition And Notations

A tensor of size $n_1 \times n_2 \times \cdots \times n_d$ requires $O(n^d)$ storage

$$
\mathbf{A}(i_1, i_2, \cdots, i_d) \approx \mathbf{C}_1(i_1) \cdot \mathbf{C}_2(i_2) \cdot \cdots \mathbf{C}_d(i_d)
$$

$$
=\sum_{\alpha_0,\alpha_2,\cdots,\alpha_{d-1},\alpha_d}^{r_0,r_1,\cdots,r_d}\mathbf{C}_1(\alpha_0,i_1,\alpha_1)\cdot\mathbf{C}_2(\alpha_1,i_2,\alpha_2)\cdots\mathbf{C}_d(\alpha_{d-1},i_d,\alpha_d)
$$

here we have open boundary conditions $r_0 = r_d = 1$. If $\alpha_d = \alpha_1$, it is called a tensor-ring.

Figure: Tensor-Train (left); Tensor-Ring (right)

- **•** Advantages:
	- Storage depends linearly on d , but cubically on r

 \star Important to seek low-rank decompositions

 \triangleright Cost of linear algebra operations ¹ depends linearly on d:

- Other relevant algorithms:
	- ► TT-Round: Given TT **A**, compress **B** such that $\frac{\|A-B\|_F}{\|A\|_F} \leq \epsilon$ for some pre-specified ϵ or rank.
	- ▶ TT-Cross (AMEn-Cross, DMRG-Cross): Given a procedure to compute tensor elements, construct a low-parametric approximation to the tensor using a small number of evaluations.

 1 Implementations available in MATLAB, Python, C $\mathsf{++}$, Julia (in progress)

 2 Can be obtained from computing a Hadamard product, then contracting with a tensor of all 1's.

Problem Statement

We are interested in sampling from a target distribution of the Boltzmann-Gibbs form:

$$
\pi(\mathbf{x}) = \frac{1}{Z_{\beta}} \exp(-\beta V(\mathbf{x}))
$$

where $V:\mathbb{R}^d\to\mathbb{R}$ is some energy potential, $Z_\beta=\int_\Omega\exp(-\beta V)d\mathbf{x}$ is the partition function that is often unknown.

- **•** Issues with metastability: transition between metastable regions is a rare event
- For non-Gaussian distributions, typically use a variant of Metropolis-Hastings MCMC
	- \triangleright requires multiple evaluations to generate independent samples
- General purpose sampler for un-normalized high-dimensional and multi-modal distributions?

Conditional Distribution Sampling

Decompose:

$$
\pi(x_1, x_2, \cdots, x_d) = \pi_1(x_1) \cdot \pi_2(x_2 | x_1) \cdots \pi_d(x_d | x_1, x_2, \cdots, x_{d-1})
$$

where:

$$
\pi_k(x_k|x_1, x_2, \cdots, x_{k-1}) = \frac{\int \pi(x_1, \cdots, x_{k-1}, x_k, x_{k+1}, \cdots, x_d) dx_{k+1} \cdots dx_d}{\int \pi(x_1, \cdots, x_{k-1}, x_k, \cdots, x_d) dx_k \cdots dx_d}
$$

for
$$
i = 1, 2, ..., d
$$
 do
sample $x_i \sim \pi_i$

end

- Evaluation of high-dimensional integrals is costly
- However, a surrogate model can help us \rightarrow tensor-train approximation
	- \triangleright [Dolgov 2020] Approximation and sampling of multivariate probability distributions in the tensor train decomposition

Aside: Evaluating High-Dimensional Integrals in TT Format

Let $f:\mathbb{R}^d\to\mathbb{R}$, and quadrature be given by index set $\mathit{I}_1\times\mathit{I}_2\times\cdots\times\mathit{I}_d$ (assume discretization level N), with appropriate weights w for each dimension.

• (Recall 1d) Discretize
$$
f = \begin{pmatrix} f^1 \\ f^2 \\ \vdots \\ f^N \end{pmatrix}
$$
, with $\mathbf{w} = \begin{pmatrix} w^1 \\ w^2 \\ \vdots \\ w^N \end{pmatrix}$, then:

$$
\int f(x)dx \approx \sum_{k=1}^{N} \mathbf{w}_k \mathbf{f}_k = \mathbf{w}^T \mathbf{f}
$$

(General, formal)

$$
\int f(\mathbf{x}) dx_1 dx_2 \cdots dx_d \approx \sum_{i_1 i_2 \cdots i_d} \mathbf{f}_{i_1 i_2 \cdots i_d} \mathbf{w}_{i_1} \mathbf{w}_{i_2} \cdots \mathbf{w}_{i_d}
$$

(General, TT) Approximate:

$$
\mathbf{f}_{i_1i_2\cdots i_d} \approx \sum_{\alpha_0,\cdots,\alpha_{d-1},\alpha_d} \mathbf{C}_1(\alpha_0,i_1,\alpha_1) \cdot \mathbf{C}_2(\alpha_1,i_2,\alpha_2) \cdots \mathbf{C}_d(\alpha_{d-1},i_d,\alpha_d)
$$

then:

$$
\int f(\mathbf{x}) d x_1 d x_2 \cdots d x_d
$$
\n
$$
\approx \sum_{i_1 i_2 \cdots i_d} \sum_{\alpha_0, \cdots, \alpha_d} \mathbf{C}_1(\alpha_0, i_1, \alpha_1) \cdots \mathbf{C}_d(\alpha_{d-1}, i_d, \alpha_d) \mathbf{w}_{i_1} \cdots \mathbf{w}_{i_d}
$$
\n
$$
= \sum_{\alpha_0, \cdots, \alpha_d} \Bigg(\sum_{i_1} \mathbf{C}_1(\alpha_0, i_1, \alpha_1) \mathbf{w}_{i_1} \Bigg) \cdot \Bigg(\sum_{i_2} \mathbf{C}_2(\alpha_1, i_2, \alpha_2) \mathbf{w}_{i_2} \Bigg)
$$
\n
$$
\cdots \Bigg(\sum_{i_d} \mathbf{C}_d(\alpha_{d-1}, i_d, \alpha_d) \Bigg)
$$
\n
$$
= \mathbf{f}_{TT} \cdot \Big\{ \bigotimes_{i=1}^d \mathbf{w} \Big\}
$$

The above can be computed sequentially as we loop over the cores $i = 1, 2, \cdots, d$. イロト イ押ト イヨト イヨト

D.

 QQ

Summary of Algorithm

- Input: Cores $\{C_i\}_{i=1}^d$
- Output: Samples $\{\tilde{\mathbf{x}_n}\}_{n=1}^N$ distributed according to $\tilde{\pi}\approx\pi$
- Loop over each dimension $k = 1, 2, \cdots, d$
- Compute marginal PDF $p_k(x_k)$ vector:
	- If $k = 1$, contract all $k = 2, 3, \cdots, d$ dimensions

$$
p_k(x_k) = \mathbf{f}_{TT} \times_2 \mathbf{w} \times_3 \cdots \times_d \mathbf{w}
$$

- If $k > 1$, update core k by multiplying fixed marginal densities $p(\tilde{x}_1), p(\tilde{x}_2), \cdots, p(\tilde{x}_{k-1})$ of sampled entries
- **•** Enforce non-negativity by $p_k \leftarrow |p_k(x_k)|$
- Sample p_k via Inverse Rosenblatt:

$$
\tilde{\mathsf{x}}_k \leftarrow \mathsf{F}_{k}^{-1}(q_k)
$$

where:

$$
F_k(z) \propto \int_{-\infty}^z p_k(y) dy, q_k \sim U(0,1)
$$

Comments

- Although target π is non-negative, TT-Cross may introduce approximation errors that yield negative values
- Uses piecewise polynomial interpolation to construct continuous TT surrogate: (Linear case)

$$
\mathbf{C}_k(:,x_k,:) \leftarrow \frac{x_k - x_k^{i_k}}{x_k^{i_{k+1}} - x_k^{i_k}} \cdot \mathbf{C}_k(:,i_k+1,:) + \frac{x_k^{i_k+1} - x_k}{x_k^{i_{k+1}} - x_k^{i_k}} \cdot \mathbf{C}_k(:,i_k,:)
$$

• Inverse Rosenblatt may be replaced by a "smeared" discrete distribution, i.e.

$$
\tilde{x}_k \sim \{c_1, c_2, \cdots, c_l\}
$$

$$
\tilde{x}_k \leftarrow \tilde{x}_k + \epsilon, \epsilon \sim \mathcal{N}(0, \frac{1}{2}\Delta_k)
$$

where Δ_k is grid size

 \bullet Only has likelihood of sampled points $\{\tilde{\mathbf{x}}_n\}$, not easy to evaluate arbitrary points

Continuous TT Expansion

Goal: Want a surrogate TT distribution that enforces non-negativity and cheap to evaluate to arbitrary precision

Motivating example: Let $f \in L^2(\mathbb{R})$, and an orthonormal basis $\{\phi_i\}$, then:

$$
f = \sum_{i=1}^{\infty} \langle f, \phi_i \rangle \cdot \phi_i
$$

• Definition: (Tensor product of Hilbert spaces) Let $\mathcal{H}_1, \mathcal{H}_2$ be two Hilbert spaces; for each $\phi_1 \in \mathcal{H}_1, \phi_2 \in \mathcal{H}_2$, let $\phi_1 \otimes \phi_2$ denote the conjugate bilinear form acting on $\mathcal{H}_1 \otimes \mathcal{H}_2$ by:

$$
(\phi_1 \otimes \phi_2)(\psi_1, \phi_1) = \langle \phi_1, \psi_1 \rangle \cdot \langle \psi_2, \phi_2 \rangle
$$

a natural inner product on bilinear forms is defined by:

$$
\langle \eta \otimes \mu, \phi \otimes \psi \rangle = \langle \eta, \phi \rangle \cdot \langle \mu, \psi \rangle
$$

we then define $\mathcal{H}_1 \otimes \mathcal{H}_2$ as the completion of the set containing all linear combinations of the bilinear forms. QQ

• (Theorem)

 \bigodot $\mathcal{H}_1 \otimes \mathcal{H}_2$ is a Hilbert space

2 Let $\{\phi_n\}, \{\psi_m\}$ be bases for $\mathcal{H}_1, \mathcal{H}_2, \{\phi_n \otimes \psi_m\}$ is a basis for $\mathcal{H}_1 \otimes \mathcal{H}_2$.

 \bullet Let $L^2(\Omega_1,\mu_1), L^2(\Omega_2,\mu_2)$ be two separable Hilbert spaces with bases $\{\phi_n\}, \{\psi_m\},\$

 $L^2(\Omega_1 \times \Omega_2, \mu_1 \otimes \mu_2)$

is isomorphic to

$$
L^2(\Omega_1,\mu_1)\otimes L^2(\Omega_2,\mu_2)
$$

• Recall for orthonormal bases:

$$
\int_{\Omega} \phi_i^2 = 1, \int_{\Omega} \phi_i \phi_j = 0, (i \neq j)
$$

Let square-integrable $f:\Omega\to\mathbb{R}$ $(\Omega\subset\mathbb{R}^d)$, let $\{\phi_i\}$ be an orthonormal basis for $L^2(\Omega)$ (e.g. Legendre polynomials). Then f has the unique decomposition:

$$
f(x_1,x_2,\dots,x_d)=\sum_{i_1i_2\cdots i_d}^{\infty} \mathbf{A}_{i_1i_2\cdots i_d}\phi_{i_1}(x_1)\phi_{i_2}(x_2)\cdots \phi_{i_d}(x_d)
$$

- However, $\mathbf{A}_{i_1\cdots i_d}$ has exponential dependence on dimensions
- Seek:

$$
\mathbf{A}_{i_1\cdots i_d} \approx \sum_{\alpha_0,\cdots,\alpha_d} C_1(\alpha_0,i_1,\alpha_1)\cdots C_d(\alpha_{d-1},i_d,\alpha_d)
$$

- Questions:
	- **1** How to obtain **A**?
	- **2** How to enforce non-negativity?
	- Given A , how to sample efficiently from the surrogate distribution?

 QQQ

 \mathcal{L} and \mathcal{L} is a set \mathcal{L} in \mathcal{L} is a set \mathcal{L}

Obtaining coefficient tensor

(1d example) Choose collocation points $\{x^{(j)}\}_{j=1}^N$ along with quadrature weights **w**, a finite number of bases $\{\phi_i\}_{i=1}^M$. Let:

$$
f \approx \sum_{i=1}^M a_i \phi_i
$$

enforce equality on collocation points:

$$
\underbrace{\begin{pmatrix} f(x^{(1)}) \\ f(x^{(2)}) \\ \vdots \\ f(x^{(M)}) \end{pmatrix}}_{f} = \underbrace{\begin{pmatrix} \phi_{11} & \phi_{12} & \cdots & \phi_{1M} \\ \phi_{21} & \phi_{22} & \cdots & \phi_{2M} \\ \vdots & \cdots & \vdots \\ \phi_{N1} & \phi_{N2} & \cdots & \phi_{NM} \end{pmatrix}}_{\text{feature matrix}, \Phi} \underbrace{\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_M \end{pmatrix}}_{\text{coefficient tensor}, a}
$$

then:

$$
a=\Phi^\dagger f
$$

Comments:

- Usually take $N = p + 1$
- **Pseudoinverse may be ill-conditioned**
Hongli Zhao **Continuous Interpolation and Sau**

[Continuous Interpolation and Sampling of High-Dimensional Probability Distributions](#page-0-0) 15/22

(Alternative)

$$
f \approx \sum_{i=1}^{M} a_i \phi_i
$$

then for $j = 1, 2, \cdots, M$:

$$
\int_{\Omega} \bigg(\sum_{i=1}^{M} a_{i} \phi_{i} \bigg) \phi_{j} = \sum_{i} \underbrace{\int_{\Omega} \phi_{i} \phi_{j}}_{= \delta_{i=j}} = \int_{\Omega} f \phi_{j} \approx \sum_{k=1}^{N} w_{k} f(x^{(k)}) \phi_{j}(x^{(k)})
$$

• (In vector form)

$$
\textbf{a} = \boldsymbol{\tilde{\Phi}}^{\mathcal{T}} \cdot \textbf{f}
$$

where:

$$
\tilde{\boldsymbol{\Phi}}(:,k) \leftarrow \mathbf{w} \circ \boldsymbol{\Phi}(:,k)
$$

 \equiv

 2990

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Obtaining coefficient tensor: Generalization

For each dimension, the coefficients can be solved via:

 $a = D \cdot f$

where D is some form of data matrix.

Let F be a tensor, then we have the following generalization:

$$
A_{i_1\cdots i_d} = \sum_{j_1\cdots j_d} D_{i_1j_1}\cdots D_{i_dj_d} F_{j_1\cdots j_d}
$$

O Approximate:

$$
F_{j_1\cdots j_d} \approx \sum_{\beta_0,\cdots,\beta_d} C(\beta_0,j_1,\beta_1)\cdots C_d(\beta_{d-1},j_d,\beta_d)
$$

consequently:

 $A_{i_1\cdots i_d} \approx$

$$
\sum_{j_1\cdots j_d} D_{i_1j_1}\cdots D_{i_dj_d} \bigg(\sum_{\beta_0,\cdots,\beta_d} C(\beta_0,j_1,\beta_1)\cdots C_d(\beta_{d-1},j_d,\beta_d)\bigg) \n= \n\sum_{\beta_0,\cdots,\beta_d} \bigg(\sum_{j_1} C_1(\beta_0,j_1,\beta_1)\cdot D_{j_1j_1}^T\bigg)\cdots \bigg(\sum_{j_d} C_d(\beta_{d-1},j_d,\beta_d)\cdot D_{j_dj_d}^T\bigg)
$$

G.

イロト イ押ト イヨト イヨト

 QQ

Non-negativity on interpolated points

- Given target probability distribution $\pi(\mathsf{x})$, TT-cross $p(\mathsf{x}) = \sqrt{\pi(\mathsf{x})}$ instead
- $p(\widetilde{\mathbf{x}})$ can then be evaluated in $O(dnr + dr^3)$ via tensor contraction \Rightarrow May recover $\pi(\mathbf{x}) = p^2(\mathbf{x})$
	- \blacktriangleright Here \tilde{x} can be arbitrary because we have analytic forms of the basis

Non-negativity of marginals

• Let I, J denote multi-index $\mathcal{I} = (i_1, i_2, \cdots, i_d), \mathcal{J} = (i_1, i_2, \cdots, i_d),$ and:

$$
p(\mathbf{x}) = \sum_{\mathcal{I}} \mathbf{A}_{\mathcal{I}} \psi_{\mathcal{I}}(\mathbf{x})
$$

where $\psi_{\mathcal{I}} = \phi_{i_1} \phi_{i_2} \cdots \phi_{i_d}$ then:

$$
p(\mathbf{x})^2 = \sum_{\mathcal{I},\mathcal{J}} \mathbf{A}_{\mathcal{I}} \mathbf{A}_{\mathcal{J}} \psi_{\mathcal{I}} \psi_{\mathcal{J}}
$$

substituting in tensor-train:

$$
\approx \sum_{i_1,\cdots,i_d,j_1,\cdots,j_d} \mathbf{A}_{i_1\cdots i_d} \mathbf{A}_{j_1\cdots j_d}(\phi_{i_1}\phi_{j_1})\cdots(\phi_{i_d}\phi_{j_d})
$$

- 39

 Ω

 $\mathcal{L} \left(\mathcal{L} \right) = \mathcal{L} \left(\mathcal{L} \right) = \mathcal{L} \left(\mathcal{L} \right)$

• Then the marginal p_1 is obtained as:

$$
p_1 = \int_{\Omega_2 \times \cdots \times \Omega_d} \pi(\mathbf{x}) dx_2 \cdots dx_d =
$$

$$
\int_{\Omega_2 \times \cdots \times \Omega_d} \sum_{i_1, \dots, i_d, j_1, \dots, j_d} \mathbf{A}_{i_1 \dots i_d} \mathbf{A}_{j_1 \dots j_d} (\phi_{i_1} \phi_{j_1}) \cdots (\phi_{i_d} \phi_{j_d}) dx_2 \cdots dx_d
$$

by orthonormality:

$$
=\sum_{\mathcal{I},\mathcal{J}}\underbrace{\mathbf{A}_{i_1i_2\cdots i_d}\mathbf{A}_{j_1i_2\cdots i_d}}_{=:G_{i_1i_1}}(\phi_{i_1}\phi_{j_1})
$$

• Definition: Let **T** be a multi-dimensional array with size (n_1, n_2, \dots, n_d) , the k-th unfolding refers to the matrix:

 $T_{i_1\cdots i_k,i_{k+1}\cdots i_d}$ = reshape(T, prod(n1:nk-1), prod(nk:nd))

• Let S denote the first unfolding of A , then:

$$
G=SS^T
$$

is positive semidefinite by construction. Then we have:

$$
p_1(z) = \phi(z)^T S S^T \phi(z) = [S^T \phi(z)]^T [S^T \phi(z)]_{\text{max}} \equiv \text{max}
$$

For all arbitrary Equation Exercise For Arbitrary Continuous Interpo ⁿ Hongli Zhao [Continuous Interpolation and Sampling of High-Dimensional Probability Distributions](#page-0-0) January 19, 2022 20/22

Valid Probability Distribution

• The above surrogate in fact defines a distribution even though partition function of the target is unknown, if we set:

$$
\mathbf{A} \leftarrow \frac{\mathbf{A}}{\|\mathbf{A}\|_F}
$$
\n
$$
\int \tilde{\pi}(\mathbf{x}) d\mathbf{x} = \int p(\mathbf{x})^2 d\mathbf{x} = \int \sum_{\mathcal{I}, \mathcal{J}} \mathbf{A}_{\mathcal{I}} \mathbf{A}_{\mathcal{J}} \psi_{\mathcal{I}} \psi_{\mathcal{J}} d\mathbf{x}
$$
\n
$$
= \sum_{i_1, \dots, i_d, j_1, \dots, j_d} \mathcal{A}_{i_1 \dots i_d} \mathcal{A}_{j_1 \dots j_d} \left(\int \phi_{i_1} \phi_{j_1} d\mathbf{x}_1 \right) \dots \left(\int \phi_{i_d} \phi_{j_d} d\mathbf{x}_d \right)
$$
\n
$$
= \sum_{i_1, \dots, i_d, j_1, \dots, j_d} \mathbf{A}_{i_1 \dots i_d}^2 = ||\mathbf{A}||_F^2 = 1
$$

- \bullet In addition, can put **A** in "left-right" QR form
	- \triangleright For x_k , tensor contraction (integrating out variables $(x_1, \cdots, x_{k-1}, x_{k+1}, \cdots, x_d)$ is identity
	- \triangleright Can essentially sample N points in $O(Nd)$

ο

Questions?

 2990

イロト イ団 トイ ヨト イヨト 一番