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This short note accompanies the works [7, 5] and describes an important subroutine for4

obtaining samples from a high-dimensional probability distribution. In this note, we follow5

the same notation conventions in the works referenced. The sampling routine is based on the6

functional tensor-train (FTT) representation of the density, originally described in [3]. The7

coordinate samples are obtained individually by conditional sampling [4], first applied in [2],8

but only for discrete tensor-trains. Let d denote the number of dimensions, the following9

advantages are enjoyed by the method is this note:10

(1) Continuity: sampling at arbitrary points in the space, not only grid points11

(2) Scalable: runtime and storage complexity depends linearly on dimensions d.12

(3) Valid probability density: marginals always are nonnegative and normalized; no addi-13

tional approximation or correction is required.14

Let x = (x1, . . . , xd) denote relevant spatial coordinates, p = p(x1, . . . , xd) denote the target15

probability density (square integrable) and only known up to a normalization constant. Define16

q =
√
p. We suppose a functional tensor-train approximation is already constructed (e.g. with17

the TT-cross method [6]):18

(1) q ≈
∑
I

( r1,...,rd−1∑
α1,...,αd−1

A1[1, i1, α1] · · · Ad[αd−1, id, 1]

)
ϕI(x1, . . . , xd)

where I is multi-index in Nd, and ϕ(·) : Rd → R is a multidimensional basis function (e.g.19

Chebyshev, Legendre). ϕI(x) = ϕi1(x1) · · ·ϕid(xd).20

=
∑

α1,...,αd−1

( n1∑
i1=0

A1[1, i1, α1]ϕi1(x1)

)
· · ·

( nd∑
id=0

Ad[αd−1, id, 1]ϕid(xd)

)
= F1[:, x1, :] · · · Fd[:, xd, :]

Remark. Building a functional tensor-train To be more concrete, we take a detour and21

describe the process of computing a continuous interpolation given discrete sample points. Let22

{x(i)}Mi=1 be the grid points on interval [a, b]. We require:23

(2) Inq(x
(i)) :=

n∑
j=0

cjϕj(x
(i)) = q(x(i)),∀i ∈ {1, 2, . . . ,M}

where IN denotes the interpolation operator with order n. The above problem can either be24

solved with Galerkin projection using the fact that the basis functions ϕ are orthogonal, or25
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regression. The regression will look like the following:26

(3)

 ϕ0(x
(1)) · · · ϕn(x

(1))
...

. . .
...

ϕ0(x
(M)) · · · ϕn(x

(M))


c0...
cn

 =

 q(x(1))
...

q(x(M))


or more compactly:27

Φc = q

The best fit coefficients is given by the pseudoinverse:28

(4) c∗ = (ΦTΦ)−1ΦTq

We make the remark that matrix Φ is typically ill-conditioned when n ≫ M . The above can29

be solved in each dimensions.30

Continuing our sampling derivation, the last expression in (1) gives a more direct interpre-31

tation as a tensor-train where each core is a square-integrable function in the variable xk. We32

begin by deriving the first marginal using the TT representation of q.33

(5) p1(x1) =

∫
p(x1, . . . , xd)dx2 · · · dxd =

∫
q2(x1, . . . , xd)dx2 · · · dxd

34

=
∑

i1,...,id
j1,...,jd

C[i1, I>1]C[j1,J>1]ϕi1(x1)ϕj1(x1)δi1,j1 · · · δid,jd =
∑
i1,j1

B[i1, j1]ϕi1(x1)ϕj1(x1)

where C is formed by contracting the TT cores A’s at appropriate indices. And B[i1, j1] :=35 ∑
i2,j2,...,id,jd

C[i1, . . . , id]C[j1, . . . , jd]. δi,j = 1 if i = j and 0 otherwise. One can imagine a ladder-36

like structure, and for each marginal k, we are contracting all the rungs other than position37

k.38

We notice that the marginal is continuous and is non-negative by definition of the matrix B.39

To sample from the marginal numerically, one may then specify a quadrature with any desired40

level of refinement, and apply inverse transform sampling:41

(6) u1 ∼ U(0, 1), solve F (x1) =

∫ x1

−∞
p1(y)dy = u1 for x1

Since we know the basis functions analytically, we may furtuer simplify:42

(7) u1 =

∫ x1

−∞
p1(y)dy =

∫ x1

−∞

∑
i1,j1

B[i1, j1]ϕi1(y)ϕj1(y)dy =
∑
i1,j1

B[i1, j1]Φi1j1(x1)

where:43

(8) Φi1j1(x) =

∫ x

−∞
ϕi1(y)ϕj1(y)dy

is the antiderivative of the product, which is known analytically because it is a polynomial (if we44

use a certain class of polynomial bases). This can be evaluated at very little cost. Sampling (6)45
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can then be considered as solving a root-finding problem and can be done using any standard46

algorithms.47

The computation of other marginals/conditionals follow a similar, sequential procedure. The48

former already-sampled indices must be fixed by evaluating:49

(9) ϕ∗
I<k := ϕi1(x

∗
1) · · ·ϕik−1

(x∗
k−1)

and contracted with corresponding indices of C. And the latter is again simplified due to50

orthogonality of basis functions. At sampling coordinate k, the marginal distribution in xk has51

the following form:52

(10) pk(xk|x∗
<k) ∝

∑
1,...,id
j1,...,jd

C[I<k, ik, I>k]C[J<k, jk,J>k]ϕI∗
<k
ϕ∗
J>kϕik(xk)ϕjk(xk)δI>k,J>k

As indices other than ik, jk are fixed, it is appropriate to put the above expression in a similar53

format to (5):54

(11) pk(xk|x∗
<k) ∝

∑
ik,jk

Bk[ik, jk]ϕikϕjk

where:55

(12) Bk =
∑

I<k,I>k
J<k,J>k

C[I<k, ik, I>k]C[J<k, jk,J>k]δI<k,J>k

In words, computing the matrix Bk now only amounts to computing the products between the56

first (k − 1) cores instead of all d cores. Moreover, in the sequential procedure, the “history”57

(of computed matrices) can be stored, updated and queried for subsequent computations.58

We summarize the full sampling process in the following section.59

1. Main Routine60

The preparation phase refers to putting the tensor-train in, for instance, “right-left orthogo-61

nal” form by sequential QR decomposition. This step is not required, but would greatly save62

computational overhead during sampling during contracting of the “rungs”, where we effec-63

tively obtain identity matrices. More details can be found in [1]. It is also possible to consider64

“middle out” QR forms, hierarchical, or other patterned QR forms when d is considerably high.65

However, we leave that exploration to future work.66

In this section, we derive the sampling procedure. We sequentially keep track of the fixed67

coordinates x∗
<k = (x∗

1, . . . , x
∗
k−1). At each step, we need to have a representation of the marginal68

p(x1, . . . , xk−1, xk), where we fix the first (k − 1) variables and marginalize out the trailing69

variables xk+1, . . . , xd. By expression the marginal distribution as a Hadamard product of70

tensors, we obtain:71

(13) p(x∗
<k, xk) =

∫
q2(x∗

<k, xk,x>k)dx>k =
∑
ik,jk

Bk[ik, jk]ϕik(xk)ϕjk(xk)
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with:72

Bk[ik, jk] =
∑

I<k,I>k
J<k,J>k

C[I<k, ik, I>k]C[J<k, jk,J>k]ϕI∗
<k
ϕ∗
J<k

∫
ϕI>kϕJ>k

dx>k

=
∑

I<k,I>k
J<k,J>k

C[I<k, ik, I>k]C[J<k, jk,J>k]ϕI∗
<k
ϕ∗
J<k

δI>k,J>k

note that the dirac delta arises from orthogonality of basis functions when marginalizing the73

trailing variables. As mentioned, we may by-pass explicitly contracting cores involving the74

trailing variables. Substituting in the orthogonalized cores Q,R, we have:75

(14)

(∑
i1,i′1

R1[1, i1, :]R1[1, i
′
1, :]

)
·
(∑

i1,i′1

Q1[1, i1, :]Q1[1, i
′
1, :]

)
for indices I<k,J<k. We make clear the contraction operations needed for each coordiante and
derive a sequential procedure. Let us define:

R̃1[α1;α
′
1] =

∑
i1,i′1

R1[1, i1, α1]R1[1, i
′
1, α

′
1]ϕ

∗
i1
ϕ∗
i′1

Q̃s[αs−1, αs;α
′
s−1, α

′
s] =

∑
is,i′s

Qs[αs−1, is, αs]Qs[α
′
s−1, i

′
s, α

′
s]ϕ

∗
isϕ

∗
i′s

(s = 2, . . . , k − 1)

As for indices I>k,J>k, we make the dirac delta arising from orthogonality of the basis76

functions more explicit:77

(15)


Q̃s[αs−1, αs;α

′
s−1, αs] =

∑
is,i′s

Qs[αs−1, is, αs]Qs[α
′
s−1, i

′
s, α

′
s]δis,i′s

(s = k + 1, . . . , d)

where we note that:78

(16)
∑

{αs=α′
s

Q̃s[αs−1, αs;α
′
s−1, α

′
s] = ⟨Qs[αs−1, :, :],Qs[α

′
s−1, :, :]⟩is = Irs

By the above definitions, we obtain from left to right via contracing α1, . . . , αs−1, and αs+1, . . . , αd,79

which is updated sequentially, one can also see positive-semidefiniteness from the below expres-80

sions:81

(17) B1[i1, i′1] =
∑
α1,α′

1

R1[1, i1, α1]R1[1, i
′
1, α

′
1]
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and:82

(18) Bk[ik, i′k] =
∑

1,...,αk−1,αk

α′
1,...,α

′
k−1,α

′
k

R̃1Q̃2 · · · Q̃k−1︸ ︷︷ ︸
=Bk−1

Qk[αk−1, ik, αk]Qk[α
′
k−1, i

′
k, α

′
k]

for k > 1. This means the computation of Bk only involves cores up to (k− 1), instead of all d83

cores.84

Finally, by direct integration, we have that:85

(19)
∑
ik,i

′
k

∫
ϕikϕi′k

dxk =
∑
ik,i

′
k

Bkδik,i′k = Tr[Bk]

such that each conditional density can be normalized:86

(20) pk =
1

Tr[Bk]
∑
ik,i

′
k

Bkϕikϕi′k

The next section discusses computational complexity involved.87

2. Complexity of Sampling88

Let r = max1≤k≤d rk, n = max1≤k≤d nk, and sample size be N . In the preparatoion phase,89

a reduced QR decomposition on O(d) unfolding matrices, each of size nr × r, costing at most90

O(nr3). The preparation of orthogonalizing each core costs a total of O(dnr3) to complete.91

During the sampling phase, we never expkicitly form the tensor Hadamard product, and only92

keep track of a “square root marginal matrix” P (k) such that Bk = P (k)(P (k))T and fixed basis93

vectors ϕ∗
1, · · · ,ϕ∗

k−1. We modify the matrix P (k+1) ← update(P (k)) from left to right as94

we proceed with sampling the coordinates. Forming basis vectors require O(dn) time in total95

(assuming polynomial evaluation is O(1)), a matrix-vector multiply to fix the last coordinate96

costs O(n2r), updating the matrix P (k) by a tensor-vector cotraction with core Qk costs O(nr2).97

Finally, forming the polynomial in (8) can be done in one matrix-vector multiply as vk(xk) =98

(P (k))ϕk(xk), and returning v(xk)v
T
k (xk), which in total costs O(n2r+ r2). We assume solving99

the polynomial equation costs O(1) time per coordinate, or O(d) in total. The full runtime100

complexity is thus:101

(21) O(dnr3) +O(Nd · (n+ 2n2r + r2 + nr2)) ∼ O(dnr3) +O(Ndn2r2)

which is linear in dimensions d and sample size N , and quadratic in rank r. Thus, having a102

low rank structure for the problem is crucial for efficiency.103
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