
CS61BL Tutoring
Session

Hongli (Bob) Zhao

Worksheet 7: B-Trees

Agenda
● Proj2 due at Saturday

midnight!
○ Come to Project Party

on Saturday 1-3 pm in
Discord

● Quick recap of BST (Binary
Search Tree)
○ Question 1: BST

runtime
○ Motivation for

Balanced Trees

● 2-4 Trees <--> LLRB Trees
○ Equivalent operations
○ Common runtime

● Question 4: conceptual
questions

● Question 5: converting 2-4
Trees to LLRB Trees

● Any questions from Quiz 7?
○ Come back between

9-9:30 pm and ask
anything

Binary Search Trees

BST Properties

● It is a tree

○ Connected, acyclic, undirected graph

● Nodes on the left have smaller values than root, nodes on the right have larger

values than root

○ “smaller/larger” depends on how you define it (ref: .compareTo())
● Common operations:

○ contains(T key), finds the element and returns True

○ void add(T key), inserts element into tree, preserving BST property

○ T delete(T key), deletes element from tree, and returns it, preserving

BST property

○ Demo: Credit Fall 2019 Professor Hilfinger’s Slides

https://inst.eecs.berkeley.edu/~cs61b/fa19/materials/lectures/lect21.pdf

Question 1: Why do we want Balanced-ness?

Poin:
- If the tree is

balanced, we get
a log-speed up on
average

● - But the tree
structure is
problem
dependent

-

Balanced Search Structures

● How do we always achieve a log factor speed-up?

○ Divide the nodes by some constant factor > 1

○ In other words, need to have “bushy” trees

○ Come up with a way such that the height from any leave to the root is

constant, or differ by some constant factor

● 2-4 Tree (2-3-4 Tree) Properties:

○ Each node has at least 2 children, at most 4 children

○ Any non-leaf node must have 1 more child than keys

○ Elements in nodes are sorted

● Operations:

○ find, insert, delete
○ Guaranteed to have O(logN) runtime

○ Demo

https://inst.eecs.berkeley.edu/~cs61b/fa19/materials/lectures/lect29.pdf

Question 4: Conceptual stuff

Question 4: Conceptual stuff

LLRB: Left Leaning Red-Black Tree

● Make more sense to implement Balanced trees if we need to efficiently store a large

amount of data. For our purpose, can try and implementation is tricky (not generalizable).

● 2-4 trees have a one-to-one correspondence with LLRB Trees.

● Properties:
○ Binary Search Tree, with more constraints
○ Root is black
○ Every non leaf node has 2 children
○ Every red root has 2 black children
○ (LLRB) break ties by prioritizing edges on the left

● Operations:
○ rotateLeft, rotateRight, flipColors
○ Know how to insert nodes and perform fix ups, and convert LLRB to B-Trees and vice versa

■ Resource: https://inst.eecs.berkeley.edu/~cs61b/fa19/materials/lectures/lect29/

https://inst.eecs.berkeley.edu/~cs61b/fa19/materials/lectures/lect29/

