CS61BL Tutoring
Session

Worksheet 7: B-Trees

Hongli (Bob) Zhao

N\

Agenda

Proj2 due at Saturday
midnight!

O

Come to Project Party
on Saturday 1-3 pmin
Discord

Quick recap of BST (Binary
Search Tree)

©)

©)

Question 1: BST
runtime
Motivation for
Balanced Trees

2-4 Trees <--> LLRB Trees
o Equivalent operations
o Common runtime

Question 4: conceptual

questions

Question 5: converting 2-4

Trees to LLRB Trees

Any questions from Quiz 7?
o Come back between

9-9:30 pm and ask
anything

Binary Search Trees \

BST Properties

e Itisatree
o Connected, acyclic, undirected graph
e Nodeson the left have smaller values than root, nodes on the right have larger
values than root
o “smaller/larger” depends on how you define it (ref: . compareTo ())
e Common operations:
o contains (T key), findstheelementandreturnsTrue
o wvoid add (T key), insertselementintotree,preserving BST property
o T delete(T key), deleteselementfromtree,andreturnsit, preserving
BST property
o Demo: Credit Fall 2019 Professor Hilfinger’s Slides

https://inst.eecs.berkeley.edu/~cs61b/fa19/materials/lectures/lect21.pdf

Question 1: Why do we want Balanced-ness?

1 Runtime Questions

Provide the best case and worst case runtimes in theta notation in terms of N, and a brief justification for the
following operations on a binary search tree. Assume N to be the number of nodes in the tree. Additionally,
each node correctly maintains the size of the subtree rooted at it. [Taken from Final Summer 2016]

boolean contains (T o); // Returns true if the object is in the tree

Best: O() Justification:
Worst: O() Justification:

void insert (T o); // Inserts the given object.

Best: O() Justification:

Worst: O() Justification:
T getElement (int i); // Returns the ith smallest object in the tree.

Best: O() Justification:

Worst: O() Justification:

If the tree s
balanced, we get
alog-speed up on
average

- But the tree
structure is
problem
dependent

Balanced Search Structures s
%

30 40 50 130140150

e How do we always achieve a log factor speed-up:
o Divide the nodes by some constant factor > 1
o Inother words, need to have “bushy” trees
o Come up with away such that the height from any leave to the root is
constant, or differ by some constant factor
o 2-4Tree (2-3-4 Tree) Properties:
o Each node has at least 2 children, at most 4 children
o Any non-leaf node must have 1 more child than keys
o Elementsin nodes are sorted
e Operations:

o find, insert, delete
o Guaranteed to have O(logN) runtime
o Demo

https://inst.eecs.berkeley.edu/~cs61b/fa19/materials/lectures/lect29.pdf

Question 4. Conceptual stuff

1. Why does a binary search tree have a worst case runtime of 6(n) for contains?

2. Give a sequence of operations, such that if they were inserted in the order they appear, would result in
a "poor” binary search tree.

3. Examine this B-tree with order 3. Mark the paths taken when the user calls contains(40).

‘24 ‘72

Question 4. Conceptual stuff

4. Now call insert(35), and draw the resulting tree.

5. What property of a B-tree rectifies problems of binary search trees, such as the one in 1.1? Why would
you not use a B-tree?

LLRB: Left Leaning Red-Black Tree

e Make more sense to implement Balanced trees if we need to efficiently store a large
amount of data. For our purpose, can try and implementation is tricky (not generalizable).
2-4 trees have a one-to-one correspondence with LLRB Trees.

e Properties:
o Binary Search Tree, with more constraints
o Rootisblack
o Every non leaf node has 2 children
o Everyredroot has 2 black children
o (LLRB) break ties by prioritizing edges on the left
e Operations:
o rotatelLeft, rotateRight, flipColors
o Know how to insert nodes and perform fix ups, and convert LLRB to B-Trees and vice versa
(] Resource: https://inst.eecs.berkeley.edu/~cs61b/fa19/materials/lectures/lect29/

https://inst.eecs.berkeley.edu/~cs61b/fa19/materials/lectures/lect29/

5 The Holy LLRB Invariant

RB Tree Invariants: Node labels are in order from left to right. All paths through the tree contain the same
number of black nodes. No red nodes have red parents. As a result, the height of a RB tree with n nodes is
O(logn).

LLRB trees must also maintain the following invariant (in addition to the regular red-black invariant):

No right-leaning trees (black No “4-nodes” (black parent with
parent with right red child): two red children):

|
(51015

1. What are the "fixups” for the two cases above in order to preserve the LLRB invariant (i.e. what
operations do we perform on each tree to ensure it is a proper LLRB)?

Consider the following RB tree:

2. Draw the tree after applying all necessary fixups to make it a proper LLRB tree.

3. Next, insert 10 into the tree, and apply all fixups to preserve the LLRB invariant.

4. Finally, draw the corresponding 2-3 tree.

