
CS61B Review 
Session

Hongli (Bob) Zhao

MST & Algorithms



Agenda

● Minimum Spanning Trees
○ Quick Graph 

Definitions

○ Spanning Tree
■ Motivation and 

Definition

● Algorithms
○ Prim’s Algorithm
○ Kruskal’s Algorithm

■ Compare with 
Dijkstra’s

■ Union Find and 
Path Compression

○ Runtime Analysis



Graph and Spanning Tree
● Graph theory is important in 

applications such as computer 
network security, modeling 
neurons, and social networks 

● LinkedList -> Tree -> Graph

● Graph is specified by a set of 
Nodes V and a set of edges E, 
(V, E) defines a graph
○ Many ways to represent a graph

● What is a Tree?
○ Undirected, acyclic graph
○ delicate

● Spanning: a tree is spanning if it 
contains all vertices of the graph

● Why minimize?
○ Let’s say I am an energy provider 

for residents of a city...

● An MST is a spanning tree that 
minimizes the sum of its edge 
weights



Minimum Spanning Trees
● Idea: Given a set of vertices and weighted edges among them, want to 

find the set of edges connecting  / spanning all vertices such that 
the total weight is minimized.
○ In order to make a tree (connected, no cycles), each node must 

have degree 1 → |E| = |V| - 1
○ MST is not necessarily unique

General Approach:

○ If the set of vertices is divided into 2 disjoint subsets, then a 
spanning tree must contain an edge connecting between the 2 sets.
■ Suggestion: start with some arbitrary node, build the MST by 

finding 2 disjoint sets, grow the tree by connecting them



Cut Property

● Idea: start from outside of the graph, draw a line crossing the edges, 
and dividing the set of vertices into 2 disjoint sets
○ Suppose each disjoint set already contains a “sub”-MST, how to 

merge them into a single MST?
■ Find the minimum weighted edge crossed by the line, and add it 

to our MST
■ Minimum weighted edge guaranteed to be contained in MST:

○ Proof by contradiction: suppose there exists an MST, T, that can be 
divided into 2 nonempty, disjoint sets of vertices that does not 
include the edge with min weight. By the tree property, adding any 
more edge would result in a cycle.  Denote the min weight edge by 
e_min, adding e_min and removing the edge (to avoid violating tree 
property) connecting the 2 disjoint sets of vertices would result 
in a new MST!



Cycle Property

● Idea: Take any cycle in our graph, consider the edge in 
the cycle with the maximum weight, then this edge is not 
in any MST of the graph
○ Proof by contradiction: suppose that this edge is in 

some MST of the graph. Since it is a MST, if we 
delete the edge from it, we get two disjoint sets of 
nodes. But the cycle must have some other edges in 
the MST, and by assumption, they have lower weights, 
replace the max edge with any of the edges results 
in a contradiction that we had an MST



Demo: cut property 



Cut Property

● The minimal cut property needs to hold on every part of the graph



Prim’s Algorithm
● Start with arbitrary node, grow MST from empty graph, 

keep track of 2 disjoint sets: the set of vertices that 
are in the MST, and the set of vertices that are not in 
the MST

● Pseudocode:



Demo! Scratch Work:



Kruskal’s Algorithm
● Start with all nodes being isolated, sort all edges by 

weights, 
○ Repeat adding edges with smallest weights if edge 

does not create a cycle, until we have |V| - 1 edges
○ Implicitly using the cut property → connecting 2 

disjoint sets with min weighted edge → to add (v, 
w), check if there is already a path v → w

● Pseudocode:



Demo! Scratch Work:



Union Find
● The key to Kruskal’s 

algorithm is checking that 
adding a proposed edge 
does not create a cycle
○ How do we achieve this 

efficiently?
○ Assign disjoint sets of 

vertices “names” 
(representatives)

● An edge will create a 
cycle if the adjacent 
neighbors are in the same 
component 

1. find(elem) costs O(logN) if we use 
Weighted Quick Union

2. union(set1, set2) costs O(logN) -> 
find(root2)

3. parent(elem): Path compression: 
“flatten” all nodes “on the way” to 
find root



Compare Runtime Analysis
● Both Prim’s and Kruskal’s algorithm rely on sorting 

weights by increasing weights
○ P: sort all vertices / K: sort all edges
○ P: uses PQ / K: uses UF



Other Points
● Prim’s Algorithm is similar to Dijkstra’s, but not the same

○ Resulting MST is not necessarily a shortest path tree
■ Shortest path tree depends on starting point; MST is unique 

whenever edge weights are unique.
■ Try: given cycle 0-1-2, with edges (0, 1): 4, (1, 2): 4, (0, 

2): 6; Find MST and SPT starting from each of the 3 points
○ distTo() measure is different

■ Prim’s only need to track incremental cost at each traversal; 
while Dijkstra’s is tracking the global distance to the start 
point

○ Runtime is the same:
■ Using PriorityQueue implementation, overall runtime dominated 

by reorganizing PQ:
● O( |E|| log(|V|) )



Other Points
● Kruskal’s algorithm relies on UnionFind

○ Each iteration, considers an edge in-between 2 
disjoint sets, and union the 2 sets into 1

○ Runtime: Asymptotically dominated by sorting edges:
■ O(|E| log( |V| ) )

● Questions to think about:
○ Distinct edges → unique MST

■ Vice versa?
○ Does Prim or Kruskal’s algorithm work on negative 

edges?
○ How do sparsity affect performance?



“General Feeling” for Prim (Left) and Kruskal (Right)

Thank You For Coming!

http://www.youtube.com/watch?v=6uq0cQZOyoY
http://www.youtube.com/watch?v=ggLyKfBTABo

