
CS61B Review
Session

Hongli (Bob) Zhao

MST & Algorithms

Agenda

● Minimum Spanning Trees
○ Quick Graph

Definitions

○ Spanning Tree
■ Motivation and

Definition

● Algorithms
○ Prim’s Algorithm
○ Kruskal’s Algorithm

■ Compare with
Dijkstra’s

■ Union Find and
Path Compression

○ Runtime Analysis

Graph and Spanning Tree
● Graph theory is important in

applications such as computer
network security, modeling
neurons, and social networks

● LinkedList -> Tree -> Graph

● Graph is specified by a set of
Nodes V and a set of edges E,
(V, E) defines a graph
○ Many ways to represent a graph

● What is a Tree?
○ Undirected, acyclic graph
○ delicate

● Spanning: a tree is spanning if it
contains all vertices of the graph

● Why minimize?
○ Let’s say I am an energy provider

for residents of a city...

● An MST is a spanning tree that
minimizes the sum of its edge
weights

Minimum Spanning Trees
● Idea: Given a set of vertices and weighted edges among them, want to

find the set of edges connecting / spanning all vertices such that
the total weight is minimized.
○ In order to make a tree (connected, no cycles), each node must

have degree 1 → |E| = |V| - 1
○ MST is not necessarily unique

General Approach:

○ If the set of vertices is divided into 2 disjoint subsets, then a
spanning tree must contain an edge connecting between the 2 sets.
■ Suggestion: start with some arbitrary node, build the MST by

finding 2 disjoint sets, grow the tree by connecting them

Cut Property

● Idea: start from outside of the graph, draw a line crossing the edges,
and dividing the set of vertices into 2 disjoint sets
○ Suppose each disjoint set already contains a “sub”-MST, how to

merge them into a single MST?
■ Find the minimum weighted edge crossed by the line, and add it

to our MST
■ Minimum weighted edge guaranteed to be contained in MST:

○ Proof by contradiction: suppose there exists an MST, T, that can be
divided into 2 nonempty, disjoint sets of vertices that does not
include the edge with min weight. By the tree property, adding any
more edge would result in a cycle. Denote the min weight edge by
e_min, adding e_min and removing the edge (to avoid violating tree
property) connecting the 2 disjoint sets of vertices would result
in a new MST!

Cycle Property

● Idea: Take any cycle in our graph, consider the edge in
the cycle with the maximum weight, then this edge is not
in any MST of the graph
○ Proof by contradiction: suppose that this edge is in

some MST of the graph. Since it is a MST, if we
delete the edge from it, we get two disjoint sets of
nodes. But the cycle must have some other edges in
the MST, and by assumption, they have lower weights,
replace the max edge with any of the edges results
in a contradiction that we had an MST

Demo: cut property

Cut Property

● The minimal cut property needs to hold on every part of the graph

Prim’s Algorithm
● Start with arbitrary node, grow MST from empty graph,

keep track of 2 disjoint sets: the set of vertices that
are in the MST, and the set of vertices that are not in
the MST

● Pseudocode:

Demo! Scratch Work:

Kruskal’s Algorithm
● Start with all nodes being isolated, sort all edges by

weights,
○ Repeat adding edges with smallest weights if edge

does not create a cycle, until we have |V| - 1 edges
○ Implicitly using the cut property → connecting 2

disjoint sets with min weighted edge → to add (v,
w), check if there is already a path v → w

● Pseudocode:

Demo! Scratch Work:

Union Find
● The key to Kruskal’s

algorithm is checking that
adding a proposed edge
does not create a cycle
○ How do we achieve this

efficiently?
○ Assign disjoint sets of

vertices “names”
(representatives)

● An edge will create a
cycle if the adjacent
neighbors are in the same
component

1. find(elem) costs O(logN) if we use
Weighted Quick Union

2. union(set1, set2) costs O(logN) ->
find(root2)

3. parent(elem): Path compression:
“flatten” all nodes “on the way” to
find root

Compare Runtime Analysis
● Both Prim’s and Kruskal’s algorithm rely on sorting

weights by increasing weights
○ P: sort all vertices / K: sort all edges
○ P: uses PQ / K: uses UF

Other Points
● Prim’s Algorithm is similar to Dijkstra’s, but not the same

○ Resulting MST is not necessarily a shortest path tree
■ Shortest path tree depends on starting point; MST is unique

whenever edge weights are unique.
■ Try: given cycle 0-1-2, with edges (0, 1): 4, (1, 2): 4, (0,

2): 6; Find MST and SPT starting from each of the 3 points
○ distTo() measure is different

■ Prim’s only need to track incremental cost at each traversal;
while Dijkstra’s is tracking the global distance to the start
point

○ Runtime is the same:
■ Using PriorityQueue implementation, overall runtime dominated

by reorganizing PQ:
● O(|E|| log(|V|))

Other Points
● Kruskal’s algorithm relies on UnionFind

○ Each iteration, considers an edge in-between 2
disjoint sets, and union the 2 sets into 1

○ Runtime: Asymptotically dominated by sorting edges:
■ O(|E| log(|V|))

● Questions to think about:
○ Distinct edges → unique MST

■ Vice versa?
○ Does Prim or Kruskal’s algorithm work on negative

edges?
○ How do sparsity affect performance?

“General Feeling” for Prim (Left) and Kruskal (Right)

Thank You For Coming!

http://www.youtube.com/watch?v=6uq0cQZOyoY
http://www.youtube.com/watch?v=ggLyKfBTABo

