CS61BL Tutoring

Sorting algorithms

Hongli (Bob) Zhao

Agenda

e Sorting algorithms

©)

Comparison sort vs.
Counting sort
Runtime analysis
Stability

Practice problems

Sorting Algorithms \
e Main ideas

e Stability
e Practice test problems

Notations

e Stability:

A sorting algorithm is stable if it
preserves the original ordering
of already sorted items

Ex.{2,3,1,4a, 9,4c, 7, 4b}
{1,2,3,4a,4c,4b, 7, 9}

{1, 2,3,4a,4b,4c, 7, 9}

e Inversions:

Measures how disordered a
sequence of items is

e Number of inversions:

o The minimum number of
pair swaps required to
sort the list

o Ex.{1,3,4,2}has?2
inversions

Comparison sorts

e Does not rely on structure of data; only assumes an order exists
o Arranges elementsinordersuchthatarr[i] <=
arr[i+1]istrueforall 1
e Cannot perform better than O(NlogN)
o Proof by Stirling’s approximation
e |mportant sorts: Insertion sort, Selection sort, Quick sort, Heap
sort, Merge sort

INnsertion Sort

In each loop, start from the leftmost
unsorted entry, and compare with
the entry immediately to its left;
Swap the two entries if arr[i+1] <
arrli]
Repeat the first step until the entry
to the left is not larger than this
entry, or this entry has reached the
left end of the array
Repeat the previous two steps until
all entries are sorted
Runtime: O(N), O(N”2)
o Best case achieved when list
is nearly sorted
o Worst case when listisin
reverse order

{53,26,94,18,70}
{26,°°.94,18,70}
{26,53,94,18,70}
{26,53,18, 7,70}
{26,18,°,94,70}
{18,:,53,94,70}
{18,26,53,70, '}

{18,26,53,70,94}

Briefly on Tree Sort

e Movingelements in an array takes linear time, how can we make it
faster?
e Insert all elements into a Binary Search Tree, and perform traversal
o Recall in-order traversal of a BST would produce a sorted sequence.
e Runtime tosort N elements depends on the runtime to create the tree:
o Best case: NlogN
o Worst case: N*2

Selection Sort

Starting from the unsorted array,
find the minimum value, and swap
with the first value
Starting from the unsorted (N-1)
values, find the minimum value, and
swap with the second value
Repeat the process until all values
are sorted
Runtime: O(N”2) in all cases:
o O(N) for finding minimum
value
o O(N) for running selection
sort on each entry

{58,26,94,18,70]
{ 10, EEIOAERNTE }
(18,26, 9475870 }
(18,26, 53,2570 }
{18,26,53,70, 2}

{18,26,53,70,94}

Heap Sort

Better than selection sort

Assuming we are using a max-heap,
starting from the unsorted array,
heapify the array
Swap smallest value with the root
of the heap, pop the largest value
and put at the back of the array
Re-heapify the (N-1) unsorted array
Repeat the previous steps until all
values have been popped
Runtime: O(NlogN):

o Heapifying: O(NlogN)

o Swap: O(1) * N = O(N)
Question: How to implement Heap
Sort using a min-heap?

{53,26,94,18,70}
{94,70,53,26,18}
{18,70,53,26, -}
{18,70,53,26}{94}
{70,26,53,18}{94}
{18,26,53, }{94}
{18,26,53}{70, 94}
{53,26,181}{70, 94}
{18,26, }{70, 94}

{18,26}{583,70,94}

Merge Sort

Split: Recursively splits
array into halves until
further partitioning is
impossible (singleton lists)
Merge: From the bottom
level, recursively build up
the original sorted list
Runtime: always
Omega(NlogN)!
o O(N): merging back
every level
o Of(logN): number of
levels

{53,26,94,18,70}
{53,26,94 18,70}
{53,26 94}{18 70}
{53 26}{94}{18}{70}
{26,53}{94}{18, 70}
{26,53,94}{18,70}

{18,26,53,70,94}

N\

Quick Sort

Select a pivot to partition
the array (usually the
middle element)
Smaller value goes left,
large value goes right
Repeat the first two steps
until all sub-arrays cannot
be partitioned anymore or
have met a certain limit
Runtime: Omega(NlogN),
O(N”*2)
o Depends on specific
choice of pivoting!

{53,26,94,18,70}
{53,26}94{18,70}
{53,26,18,70}194
{53,26}18{70}94
18{53,26,70}94
18{53}26{70}94
1826{53,70}94

{18,26,53,70,94}

Counting sorts

e Further takes advantage of structure of data
o range of datais limited (ex. Alphabet, bits, range of integers)
e Groups objects according to a certain criteria, and use the array
structure to indicate ordering
e Canoutperform Omega(NlogN)
o Haslinear dependence on size of “dictionary”
o Runtime: O(N+K), where N is number of items, K is number
of digits
e |Important sorts: LSD sort, MSD sort

, {1219, 2523, 1311, 4215, 3132}
LSD / MSD Radix Sort
(1311, 3132, 2523, 4215, 1219}
(}

Starting from the most

significant / least significant {1311,4215,1219,2523,3132}

digit, perform counting sort on
the digit {3132,4215,1219,1311,2523]}

e Repeat counting sort on the rest {1219, 1311, 2523, 3132, 4215}
of the digits | | | |

o LSD:fromright to left
o MSD: from left toright
e Runtime:
o LSD: O(D(N+K)), Dis the
maximum number of digits
o MSD: Best case O(N+K),
Worst case O(D(N+K))

Summary

Algorithm Best case Worst case Stability Note
|nserti0n N N/\2 YeS Performance depends on number of inversions

1 A A Has constant space. Can be made stable if use
Selection NA2 NA2 No ko lits
Heap N N IOg N NO Can achieve linear time if didn’t start from scratch
QU ICk N |Og N N/\2 Depends Runtime depends on choice of pivoting
Merge NlOgN NIOgN YeS Can be highly paralellized
LSD Radix | D(N+R) D(N+K) Yes
MSD RadiX N+K D(N"‘K) YeS Can possibly stop early since we sort by the most

significant digit (when N < K) the size of our radix

(or alphabet)

Tips for Exam Problems

e Pattern matching
o Heap sort has the greatest “shuffling” when starting out
o Merge sort does not start sorting until all splitting has finished
o Look for growing sorted sequence in selection and heap sort
o insertion sort moves sequentially to the right
e Algorithm comparisons / Choosing algorithms
o Example facts:
m When would we prefer insertion sort over merge sort?
m What algorithm should we use to sort a linked list?
e Details about algorithms:
o How many inversions are there in {10,9,7,6,1}?
o Will{1123, 1830, 1960, 1110, 1210, 1390} ever appear in the
process of a LSD radix sort?

Thank you!

