CSoI1B Review
Session

Hongli (Bob) Zhao

Agenda

Asymptotic analysis

O

O

Big O notation
Tips for Runtime
Analysis
Example

Sorting algorithms

O

Comparison sorting vs.
count sorting

Runtime analysis
Stability

Tips for Exams

Asymptotics

Importance of
Analyzing Time
and Space
Complexity

Complexity is a measure of how
“good” our program is

Allows us to quantitatively and
qualitatively scale up our
programs

Makes our development process
maintainable by observing
properties of input data

Big-O, Big-Omega and Theta

e Weareinterested in how the algorithm behaves in
the long run
e Specify asymptotic bounds on families of
functions:
o Of(f(x)) - the bounded above family
o Q(f(x)) - the bounded below family
o ©(f(x)) - tight bound
m Note: “bounded above/below” does not
specify absolute performance
m Common “shapes”: O(1), O(N), O(NP),
O(logN), O(NlogN), O(aN), O(NN)

General Rules of Thumb

e Do not make assumptions about the size of an input
o Demo
e Only consider asymptotic behavior
o lgnore lower order terms and constants
o Ex.Whatis the relationship between O(logN?) and O(logN?3)?
e Test out different properties of data
o Different inputs may yield different best case and worst case
runtime
o When upper bound and lower bound differ, there is no tight bound

SYelgdlgle
Algorithms

e Main ideas
e Stability
e Practice test problems

Terminology

e Stability:

A sorting algorithm is stable if it
preserves the original ordering of
already sorted items

Ex.{2,3,1,4a, 9,4c, 7,4b}
{1,2,3,4a,4c,4b, 7, 9}

{1, 2,3,4a,4b, 4c, 7, 9}

e Inversions:

Measures how disordered a
sequence of items is

e Number of inversions:

o The minimum number of
pair swaps required to
sort the list

o Ex.{1,3,4,2}has?2
inversions

Comparison sorts

e Does not rely on structure of data; only assumes an order exists
o Arranges elementsinordersuchthatarr[i] <=
arr[i+1]istrue
e Cannot perform better than Q(NlogN)
o Proof by Stirling’s approximation
e |mportant sorts: Insertion sort, Selection sort, Quick sort, Heap
sort, Merge sort

Counting sorts

e What if we can do more than comparing?
o range of datais limited (ex. Alphabet, bits, range of integers)
e Groups objects according to a certain criteria, and use the array
structure to indicate ordering
e Can outperform Q(NlogN)
o Haslinear dependence on size of “dictionary”
e |mportant sorts: LSD sort, MSD sort

INnsertion Sort

In each loop, start from the leftmost
unsorted entry, compare with the
entry immediately to its left; Swap
the two entries if arr[i+1] < arr]i]
Repeat the first step until the entry
to the left is not larger than this
entry, or this entry has reached the
left end of the array
Repeat the previous two steps until
all entries are sorted
Runtime: (N), O(N?)
o Best case achieved when list
is nearly sorted
o Worst case whenllistisin
reverse order

{53,26,94,18,70}
{26,°°.94,18,70}
126,53,94,18,70}
{26,53,18, 1,70}
{26,18,°,94,70}
{18,:,53,94,70}
{18,26,53,70, -}

{18,26,53,70,94}

Selection Sort

Starting from the unsorted array,
find the minimum value, and swap
with the first value
Starting from the unsorted (N-1)
values, find the minimum value, and
swap with the second value
Repeat the process until all values
are sorted
Runtime: O(N?) in all cases:
o O(N) for finding minimum
value
o O(N) for running selection
sort on each entry

{53,26,94,18,70}
{ 18, 26N94N580 }
{ 18,26, 9475870 }
{18,26,53,94)70 }

{18,26,53,70,94)

{18,26,53,70,94}

Heap Sort

Better than selection sort

Assuming we are using a max-heap,
starting from the unsorted array,
heapify the array
Swap smallest value with the root
of the heap, pop the largest value
and put at the back of the array
Re-heapify the (N-1) unsorted array
Repeat the previous steps until all
values have been popped
Runtime: O(NlogN):

o Heapifying: O(NIogN)

)

o Swap:0O(1)* O(N
o Reheapify: O(IogN) *N=
O(NlogN)

{53,26,94,18,70}
{94,70,53,26,18}
{18,70,53,26, -}
{18,70,53,26}{94}
{70,26,53,18}{94}
{18,26,53, }{94}
{18,26,53}{70, 94}
{53,26,181}{70, 94}
{18,26, }{70, 94}

{18,26}{583,70,94}

N\

Quick Sort

Select a pivot to partition
the array (usually the
middle element)
Smaller value goes left,
large value goes right
Repeat the first two steps
until all sub-arrays cannot
be partitioned anymore or
have met a certain limit
Runtime: Omega(NlogN),
O(N?)

o Depends on specific

choice of pivot!

{53,26,94,18,70}
{53,26}94{18,70}
{53,26,18,70}194
{53,26}18{70}94
18{53,26,70}94
18{53}26{70}94
1826{53,70}94

{18,26,53,70,94}

Merge Sort

Split: Recursively splits
array into halves until
further partitioning is
impossible (singleton lists)
Merge: From the bottom
level, recursively build up
the original sorted list
Runtime: always O(NlogN)!
o O(N): merging back
every level
o Of(logN): number of
levels

{53,26,94,18,70}
{53,26,94 18,70}
{53,26 94}{18 70}
{53 26}{94}{18}{70}
{26,53}{94}{18, 70}
{26,53,94}{18,70}

{18,26,53,70,94}

LSD / MSD Radix Sort

Starting from the most
significant / least significant
digit, perform counting sort
on the digit
Repeat counting sort on the
rest of the digits
o LSD:fromright to left
o MSD: from left to right
Runtime: O(B)
o Each placement takes
O(1) * B byte size of
each entry

{1219,2523,1311,4215,3132}
{1311,3132,2523,4215,1219}
{1311,4215,1219,2523, 3132}
{3132,4215,1219,1311, 2523}

{1219,1311,2523,3132,4215}

Tips for Exam Problems

e Pattern matching
o Heap sort has the greatest “shuffling” when starting out
o Merge sort does not start sorting until all splitting has finished
o Look for growing sorted sequence in selection and heap sort
o insertion sort moves sequentially to the right
e Algorithm implementations / Choosing algorithms
o Example facts:

m When would we prefer insertion sort over merge sort?
m Howtoimplement Heap Sort using a min-heap?

e Details about algorithms:
o How many inversions are there in {10,9,7,1,6}?
o Will{1123,1830,1960,1110,1210, 1390} ever appear in the
process of a LSD radix sort?

Summary

Algorithm Best case Worst case Stability Note

Insertion N NA2 Yes Perfor_mance depends on number of
inversions

Selection NA2 NA2 depends Has constant space. Can be made
stable if use linked lists

Heap \ NlogN No Has the greatest “shuffling”

Quick NlogN NA2 No Runtime depends on choice of pivoting

Merge NIogN NIogN Yes Can be highly paralellized

LSD/MSD B B Yes B = N*K (size of array * length of each

Radix

item)

Thank you!

