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Asymptotics



Importance of 
Analyzing Time 
and Space 
Complexity

● Complexity is a measure of how 
“good” our program is

● Allows us to quantitatively and 
qualitatively scale up our 
programs

● Makes our development process 
maintainable by observing 
properties of  input data



Big-O, Big-Omega and Theta

● We are interested in how the algorithm behaves in 
the long run

● Specify asymptotic bounds on families of 
functions:
○ O(f(x)) - the bounded above family
○ 𝛀(f(x)) - the bounded below family
○ 𝝝(f(x)) - tight bound

■ Note: “bounded above/below” does not 
specify absolute performance

■ Common “shapes”:  O(1), O(N), O(Np), 
O(logN), O(NlogN), O(aN), O(NN)



General Rules of Thumb

● Do not make assumptions about the size of an input
○ Demo

● Only consider asymptotic behavior
○ Ignore lower order terms and constants
○ Ex. What is the relationship between O(logN2) and O(logN3)?

● Test out different properties of data
○ Different inputs may yield different best case and worst case 

runtime 
○ When upper bound and lower bound differ, there is no tight bound



Sorting 
Algorithms

● Main ideas
● Stability
● Practice test problems



Terminology

● Stability:

A sorting algorithm is stable if it 
preserves the original ordering of 
already sorted items

Ex. {2, 3, 1, 4a, 9, 4c, 7, 4b}

{1, 2, 3, 4a, 4c, 4b, 7, 9}

{1, 2, 3, 4a, 4b, 4c, 7, 9}

● Inversions:

Measures how disordered a 
sequence of items is

● Number of inversions:
○ The minimum number of 

pair swaps required to 
sort the list

○ Ex. {1, 3, 4, 2} has 2 
inversions



Comparison sorts

● Does not rely on structure of data; only assumes an order exists
○ Arranges elements in order such that arr[i] <= 

arr[i+1]is true
● Cannot perform better than 𝛀(NlogN)

○ Proof by Stirling’s approximation
● Important sorts: Insertion sort, Selection sort, Quick sort, Heap 

sort, Merge sort



Counting sorts

● What if we can do more than comparing?
○ range of data is limited (ex. Alphabet, bits, range of integers)

● Groups objects according to a certain criteria, and use the array 
structure to indicate ordering

● Can outperform 𝛀(NlogN) 
○ Has linear dependence on size of “dictionary”

● Important sorts: LSD sort, MSD sort



Insertion Sort
● In each loop, start from the leftmost 

unsorted entry, compare with the 

entry immediately to its left; Swap 

the two entries if arr[i+1] < arr[i]

● Repeat the first step until the entry 

to the left is not larger than this 

entry, or this entry has reached the 

left end of the array

● Repeat the previous two steps until 

all entries are sorted

● Runtime: 𝛀(N), O(N2)

○ Best case achieved when list 

is nearly sorted

○ Worst case when list is in 

reverse order

{ 53, 26, 94, 18, 70 }

{ 26, 53, 94, 18, 70 }

{ 26, 53, 94, 18, 70 }

{ 26, 53, 18, 94, 70 }

{ 26, 18, 53, 94, 70 }

{ 18, 26, 53, 94, 70 }

{ 18, 26, 53, 70, 94 }

{ 18, 26, 53, 70, 94 }



Selection Sort
● Starting from the unsorted array, 

find the minimum value, and swap 

with the first value

● Starting from the unsorted (N-1) 

values, find the minimum value, and 

swap with the second value

● Repeat the process until all values 

are sorted

● Runtime: O(N2) in all cases:

○ O(N) for finding minimum 

value

○ O(N) for running selection 

sort on each entry

{ 53, 26, 94, 18, 70 }

{ 18, 26, 94, 53, 70 }

{ 18, 26, 94, 53, 70 }

{ 18, 26, 53, 94, 70 }

{ 18, 26, 53, 70, 94 }

{ 18, 26, 53, 70, 94 }



Heap Sort
    Better than selection sort

● Assuming we are using a max-heap, 

starting from the unsorted array, 

heapify the array

● Swap smallest value with the root 

of the heap, pop the largest value 

and put at the back of the array

● Re-heapify the (N-1) unsorted array

● Repeat the previous steps until all 

values have been popped

● Runtime: O(NlogN):

○ Heapifying: O(NlogN)

○ Swap: O(1) * N = O(N)

○ Reheapify: O(logN) * N = 

O(NlogN)

{ 53, 26, 94, 18, 70 }

{ 94, 70, 53, 26, 18 }

{ 18, 70, 53, 26, 94 }

{ 18, 70, 53, 26 } {94}

{ 70, 26, 53, 18 } {94}

{ 18, 26, 53, 70 } {94}

{ 18, 26, 53 } {70, 94}

{ 53, 26, 18 } {70, 94}

{ 18, 26, 53 } {70, 94}

{18, 26} { 53, 70, 94 }



Quick Sort
● Select a pivot to partition 

the array (usually the 
middle element)

● Smaller value goes left, 
large value goes right

● Repeat the first two steps 
until all sub-arrays cannot 
be partitioned anymore or 
have met a certain limit

● Runtime: Omega(NlogN), 
O(N2)
○ Depends on specific 

choice of pivot!

{ 53, 26, 94, 18, 70 }

{ 53, 26 } 94 { 18, 70 }

{ 53, 26, 18, 70 } 94

{ 53, 26 } 18 { 70 } 94

18 { 53, 26, 70 } 94

18 { 53 } 26 { 70 } 94

18 26 { 53, 70 } 94

{ 18, 26, 53, 70, 94 }



Merge Sort
● Split: Recursively splits 

array into halves until 
further partitioning is 
impossible (singleton lists)

● Merge: From the bottom 
level, recursively build up 
the original sorted list

● Runtime: always O(NlogN)!
○ O(N): merging back 

every level
○ O(logN): number of 

levels

{ 53, 26, 94, 18, 70 }

{53, 26, 94} {18, 70}

{53, 26} {94} {18} {70}

{53} {26} {94} {18} {70}

{26, 53} {94} {18, 70}

{ 26, 53, 94 } {18, 70 }

{ 18, 26, 53, 70, 94 }

 



LSD / MSD Radix Sort
● Starting from the most 

significant / least significant 
digit, perform counting sort 
on the digit

● Repeat counting sort on the 
rest of the digits
○ LSD: from right to left
○ MSD: from left to right

● Runtime: O(B)
○ Each placement takes 

O(1) * B byte size of 
each entry 

{1219, 2523, 1311, 4215, 3132}

{1311, 3132, 2523, 4215, 1219}

{1311, 4215, 1219, 2523, 3132}

{3132, 4215, 1219, 1311, 2523}

{1219, 1311, 2523, 3132, 4215}

 



Tips for Exam Problems
● Pattern matching

○ Heap sort has the greatest “shuffling” when starting out
○ Merge sort does not start sorting until all splitting has finished
○ Look for growing sorted sequence in selection and heap sort
○ insertion sort moves sequentially to the right

● Algorithm implementations / Choosing algorithms
○ Example facts:

■ When would we prefer insertion sort over merge sort?
■ How to implement Heap Sort using a min-heap?

● Details about algorithms:
○ How many inversions are there in {10,9,7,1,6}?
○ Will {1123, 1830, 1960, 1110, 1210, 1390} ever appear in the 

process of a LSD radix sort?



Summary

Algorithm Best case Worst case Stability Note

Insertion N N^2 Yes Performance depends on number of 
inversions

Selection N^2 N^2 depends Has constant space. Can be made 
stable if use linked lists

Heap N NlogN No Has the greatest “shuffling”

Quick NlogN N^2 No Runtime depends on choice of pivoting

Merge NlogN NlogN Yes Can be highly paralellized

LSD/MSD 
Radix

B B Yes B = N*K (size of array * length of each 
item)



Thank you!


