
Normalizing Flow: An Introduction1

Hongli Zhao2

5:00 pm, June 16, 2021, Zoom (Internal Group Seminar)3

Abstract4

In this short note, we present normalizing flow as an expressive5

and powerful generative model under which both sampling and den-6

sity evaluations are efficiently able to be implemented. Possible appli-7

cations of normalizing flow can be found in solving high-dimensional8

partial differential equations (PDE).9

1 Notations, Definitions and Theorems10

Below we present some common notations and results that we will use in11

the following sections. We assume that the audience has an application-12

focused understanding of probability theory (but not the measure-theoretic13

counterpart) on a similar level of UC Berkeley course EECS 126. With14

machine learning applications, we assume the audience has attained the level15

of understanding on par with Berkeley course CS 189.16

In the probabilistic setting, we denote x ∼ pX(x) as ”random variable x17

is distributed according to probability distribution with density pX(x)”. Let18

(Ω,F ,P) denote a probability space. For the probability density function19

pX , in certain cases we encounter the fact that it may be parametrized (such20

as in the setting of a Gaussian normal N (µ, σ). We denote θ as our class of21

parameters, and pθ(x) as the density.22

A random variable X is a mapping from Ω → Rd. We will explicitly
distinguish cases where measure theory needs to be considered. Otherwise,
x can be assumed as in Rd, and let:

E
[
x
]

=

∫
Ω

x · pX(x)dx

1

Hongli Zhao Note

denote the expectation or expected value of x ∼ pX(x). Furthermore, in
numerical methods, oftentimes we must seek approximations to true values,
we use the hat notation to denote the approximate value. For example, an
approximation to the expected value is often done by sampling a probability
distribution and taking the average over sample points {xi}Ni=1:

Ê[x] =
1

N

N∑
i=1

xi

Another commonly used quantity is the variance, defined as the expected
squared deviation from the mean:

Var
[
x
]

= E
[
(x− E

[
x
]
)2
]

In certain cases we may find it notationally convenient to simplify the
writing of the above quantities, we will denote in certain cases the expectation
x̂ or 〈x〉, and variance σ2

x. Finally, when the probabilistic models become
increasingly complex, it is more important and appropriate to clarify what
probability density is in question, with the additional subscript notations:

E
[
x
]
x∼pX

, σ2
x∼pX

• A random variable x can be either discrete or continuous. In the con-
tinuous setting (d = 1):

P(x ∈ [a, b]) =

∫
[a,b]

pX(x)dx

• In continuous space where theories are derived, integration is
∫

. The23

equivalent version of it in discrete space where theories are verified using24

data, we use
∑

.25

• (Normalizing) A valid probability density is nonnegative and has unit
mass. In order to learn probability densities from data, it is imperial that
we need to enforce: ∫

Rd
p(x)dx = 1

or:
N∑
i=1

p(xi) = 1

Page 2

Hongli Zhao Note

• (Chain rule of probability) High-dimensional settings often make many
operations computationally intractable. We are able to decompose a multi-
variate density into a sequence of single variable ones:

p(x1, x2, · · · , xd) =
d∏
j=1

p(xj|x1, x2, · · · , xj−1)

where:

p(xj|x<j) =
p(x1, x2, · · · , xj)
p(x1, x2, · · · , xj−1)

where all missing variables xj+1, · · · , xd are ”integrated out”. Namely p(x≤j)
is in fact a marginal density:

p(x≤j) =

∫
R×···×R

p(x1, x2, · · · , xd)dxj+1 · · · dxd

• (Probability change of variable formula, d = 1) Let x ∼ pX(x) and z =
f(x) or x = f−1(z) where f is a mapping x 7→ z (invertible, differentiable).
Then the density of z can be derived as:

pZ(z) = pX(x) ·
∣∣∣∣dxdz

∣∣∣∣
the derivation is given by considering the CDF:

FX(x) =

∫
[−∞,x]

pX(x)dx

and using x = f−1(z) (to transform the density), the inverse function theorem26

(to correct for unit mass), and d
dx
FX(x) = pX(x) (to recover the PDF). It is27

possible to define change of variables for general measurable functions, which28

we will skip for the purpose of this discussion.29

• (Probability change of variable formula, general d) In multivariate x ∈
Rd, the change of variable formula can be written by replacing the definition
of derivative and absolute value.

f : Rd → Rd

dz

dx
= Jf (z)

Page 3

Hongli Zhao Note

|·| = det(·)
det
(
A−1

)
= det(A)−1

for nonsingular A ∈ Rd×d. Here
∣∣dx
dz

∣∣ can be considered as volume correction.30

• (closure under composition) Let {fi}Mi=1 be a sequence of invertible and
differentiable functions, one can show that:

f = fM ◦ fM−1 ◦ · · · ◦ f1

is also invertible and differentiable, with inverse:

f−1 = f−1
1 ◦ · · · ◦ f−1

M

and chain rule of differentiation:

df

dz
=

M∏
i=1

dfi
dfi−1

where f0(z) = z.31

Below is a result that demonstrates the benefit of a normalizing flow, that32

evaluating the expected value of a transformed quantity does not require us33

to know the (potentially complex) distribution.34

• (Law of Unconscious Statistician) let z ∼ pZ(z) which is known and
easy to evaluate. Consider the mapping x = f(z), with pX being difficult to
evaluate or unknown, then E

[
x
]

is still computable by:

E
[
x
]

= E
[
f(z)

]
=

∫
Rd
f(z) · pZ(z)dz

• (Inverse CDF Sampling) Let x = (x1, x2, · · · , xd) ∈ Rd, by product rule:

pX(x1, x2, · · · , xd) =
d∏
i=1

p(xi|x1, x2, · · · , xi−1)

The CDF of each conditional distribution is given by:

FX(xi|x<i) =

∫ xi

−∞
p(xi|x<i)dxi

let fi = FX(·|x<i) and consider the invertible, differentiable transformation:

zi = fi(xi)

Page 4

Hongli Zhao Note

this forms a mapping from Rd → [0, 1]d. This mapping is also invertible as:

xi = f−1
i (zi)

since the CDF is monotonic. Finally, regarding the distribution of z, we have
by the change of variables formula that:

pZ(z) = pX(x)

∣∣∣∣det

(
dz

dx

)∣∣∣∣−1

however, the Jacobian is lower triangular because the conditional distribution
xi has no dependence on x>i. Specifically on the diagonals:

dzi
dxi

=
d

dxi
fi(xi)

which is by definition the conditional CDF, which yields:

= p(xi|x<i)
such that the determinant is:∣∣∣∣det

(
dz

dx

)∣∣∣∣ =
d∏
i=1

p(xi|x < i) = p(x1, x2, · · · , xd)

by product rule. This means:

pZ(z) = pX(x) · 1

pX(x)
= 1

and implies that z is U([0, 1]).35

One can consider the above derivation as the reason why normalizing flow36

is expressive enough to capture any distribution x ∼ pX(x) may follow. Fur-37

thermore, in other literatures, the generative direction is named conditional38

distribution sampling method where a random vector x = (x1, x2, · · · , xd) is39

iteratively generated via inverse CDF at each step. The two directions refer40

to the same underlying process.41

The following is a result from matrix calculus that we can make use in a42

proof of continuous-time flows:43

• (adjugate matrix) The adjugate matrix of an n× n matrix is:

adj(A) = CT = det(A) · A−1

where C is the cofactor matrix.44

• (Jacobi’s formula) Let A(t) be a differentiable map R→ Rn×n, then:

d

dt
A(t) = tr

(
adj(A(t))

dA(t)

dt

)
Page 5

Hongli Zhao Note

2 Normalizing Flow as a Generative Model45

In applications of machine learning, one major goal is to discover under-46

lying patterns of data. In generative models, we achieve this by directly47

approximating the probability distribution from which samples are drawn,48

and provide an efficient way to generate or predict new samples. In short, the49

main goals we would like to achieve with a good generative probabilistic50

model [7] [5] is as follows:51

• provide a satisfactory fit and generalization of training data with un-52

known distribution53

• computationally convenient sampling (prediction of new data) and den-54

sity evaluation from learned model, especially in the high-dimensional55

case [2].56

• qualitatively explainable latent space / low-dimensional representation57

In the following sections, we briefly discuss why normalizing flow can58

achieve these criterion, and common directions for building such tools.59

3 Forms of Normalizing Flow and Computa-60

tional Complexity61

In the following formulations we discuss the methods in the generative direc-62

tion, which also gives us an algorithm of sampling from a complex distribution63

once we have trained a flow:64

(1) sample latent dataset z is according to desired pZ(z).65

(2) obtain x = f(z) as samples from pX(x).66

Equivalently one can also describe the process in the normalizing di-67

rection, which also describes how normalizing flow can be used for density68

evaluation:69

(1) dataset x is acquired.70

(2) evaluate pX(x) by evaluating pZ(f−1(x)) and volume correction.71

3.1 Computational Considerations72

In the following method presentations, there is a balance between the ease73

of:74

Page 6

Hongli Zhao Note

• density evaluation: cost of computing
∣∣det

(
dx
dz

)∣∣. The naive expansion of75

determinant of a dense matrix is O(n!). One also considers LU factorization76

or SVD decomposition, which costs O(n3) at least. Research efforts have77

been given to consider special dx
dz

matrix forms (such as triangular, diagonal,78

or block diagonal) to reduce time complexity.79

• sampling: cost of computing f−1. The specific cost depends on the80

choice of f . For instance, when f = Az + b is an affine transformation, and81

A is dense, computing f−1 amounts to the cost of finding A−1, which by82

Gaussian elimination is at least O(n3). In certain cases (such as using neural83

networks), the inversion is intractable.84

• preservation of dimensions: as dimensions between invertible maps must85

be the same, cost of evaluating f(z) itself scales with d.86

3.2 Expressiveness of Normalizing Flow87

We demonstrate the result in d = 1. Multivariate PDF can be formed simi-88

larly by conditional distribution sampling. Inverse CDF sampling is a special89

case of normalizing flow. Namely, regardless of the complexity of pX(x), the90

target distribution, we can always find the cumulative distribution function91

as a suitable flow. CDFs are monotonically increasing and differentiable, and92

therefore would satisfy the desired properties.93

Precisely, the inverse CDF sampling can be described as:94

(1) generate u ∼ U([0, 1]).95

(2) let f = F−1
X where FX is the CDF of pX .96

(3) x = f(u) produces the desired distribution x ∼ pX(x).97

By inverse CDF sampling, we have demonstrated that there always exists
an invertible map f such that f(z) can be flexibly expressive. In other
words, any complex distribution can be normalized as a uniform distribution;
this also implies that the base distribution does not need to be U([0, 1]), as
compositions of flows form other flows, as demonstrated in section 1. To
transform an arbitrary distribution pZ to another arbitrary distribution pX ,
one can always consider:

pX
f1−→ U([0, 1])

f2−→ pZ

3.3 Affine Normalizing Flow: Building Block98

θ = (A, b) ∈ Rd×d × Rd

Page 7

Hongli Zhao Note

where we require A to be invertible.99

x = f(z) = Az + b

df

dz
= AT

The linear flow has several limitations both in expressiveness and com-
putations. Suppose z ∼ N (0, I), then:

pX(x) =
1

|det(A)|
· pZ(f−1(x)) =

1

|det(A)|
· pZ(A−1(x− b))

We have the multivariate Gaussian normal distribution:

pZ(z) = (2π)−d/2 exp

(
− 1

2
zT z

)
Then:

pX(x) =
1

|det(A)|
· (2π)−d/2 exp

(
− 1

2
(A−1(x− b))T (A−1(x− b))

)

=
1

(2π)d/2|det(A)|1/2|det(AT)|1/2
exp

(
− 1

2
(x− b)T (AAT)−1(x− b)

)
which means x ∼ N (b, AAT).100

Furthermore, compositions of linear flows result in linear flows. Let
f1(z) = Az + b, f2(z) = Cz + d:

f2(f1(z)) = C(Az + b) + d = CAz + (Cb+ d)

Finally, training O(d3 + d) parameters directly, evaluation of density and101

sampling are inefficient in high dimensions, as both computing A−1 and102

|det(A)| requires O(d3) flops. Further restrictions on A can be made in103

order to simplify the computations (such as diagonal or triangular A).104

3.4 Coupling Layers105

A coupling layer can benefit us in high-dimensions in terms of computational106

cost of evaluating the determinant while only using affine transformations.107

This is done by moving work to the region of the Jacobian that is ”free of108

Page 8

Hongli Zhao Note

charge”, by taking advantage of the observation that the determinant of a109

triangular matrix is the product of its diagonals.110

A coupling layer takes the general form (partitioning z) into two parts:

z =

[
z≤m
z>m

]
and define:

x =

[
x≤m
x>m

]
=

[
z≤m

f(z>m;h(z≤m))

]
where f is invertible and h has no restrictions. It is the restriction-free h(·)
that brings nonlinearity at a low cost of training and evaluation. We can
explicitly compute the form of the Jacobian:

dx

dz
=

(
Im 0
dx>m
dz≤m

D

)

where D is a matrix with entries dx>m
dz>m

.111

This is an interesting choice as we are essentially allowed to have any
nonlinearity without it causing computational cost to skyrocket in high di-
mensions, as the determinant is:∣∣∣∣det

(
dx

dz

)∣∣∣∣ =
∏
i>m

d

dzi
f(z>m;h(z≤m))

and h(z≤m) has no dependence on z>m and therefore does not need to be112

differentiated. Furthermore, the volume correction only requires the deter-113

minant, rather than the Jacobian matrix itself, therefore we would not have114

to be concerned with the lower triangular part, even in the case where h is115

non-differentiable.116

3.4.1 Nonlinearity ”for Free”117

Due to this result, for example, the NICE[8] paper was able to generate118

impressive results using only additive coupling layer and learned h as a neural119

network, without adding computational costs.120

Since the lower triangular region can help us perform operations ”for121

free”, there are research efforts focused on populating that region as much122

as possible. The HINT[6] paper offers a recursive construction. It has been123

Page 9

Hongli Zhao Note

shown that multiple layers of coupling flow is an universal approximator,124

however one needs to enforce sufficient ”mixing”, namely permuting the state125

variables so that the information from each can be learned. A permutation126

of variables can be viewed as a volume-preserving invertible map as well.127

3.5 Autoregressive Flow128

Autoregressive flow is one of the commonly used flow structures that have129

conveniently computable determinant. This is done by letting the flow map130

of xi depend on certain parameters generated via all previous latent variables131

z<i but not ”future ones” z≥i.132

It takes the general form:

xi = f(zi, hi)

hi = hi(z<i)

here f needs to be strictly monotonic, and hi serves as parametrizations.
Similar to the coupling layers, the Jacobian matrix also takes a lower tri-
angular form, since xi = f(zi, hi(z1, z2, · · · , zi−1)) has dependence on all the
previous variables, the upper triangular derivatives are all 0:

dx

dz
=


∂x1
∂z1

0
. . .

A ∂xd
∂zd


where A is the rest of the derivatives, however, we do not need to explicitly
know its form (and hence saving us computations) since the determinant is
still the diagonal product: ∣∣∣∣det

(
dx

dz

)∣∣∣∣ =
d∏
i=1

∂xi
∂zi

Autoregressive flows can be shown to be universal approximators, and133

equivalently, any autoregressive model is an autoregressive flow of one layer.134

Due to the lower triangular property, similar to coupling layers, h(·) can also135

be quite flexible (it does not need to be invertible).136

The training process of an autoregressive model can be understood as the137

following:138

Page 10

Hongli Zhao Note

(1) Decompose the joint probability by product rule.139

p(x1, x2, · · · , xd) =
d∏
i=1

p(xi|x1, x2, · · · , xi−1) =
d∏
i=1

p(xi|x<i)

(2) Model p(xi|x<i) as a parametrized single variable distribution (such
as a normal, or mixture Gaussian):

p(xi|x<i) = p(xi;hi(x<i))

By the conditional distribution sampling result, let:

xi = f(zi, hi) := F−1
X (zi;hi)

where:

FX(xi;hi) =

∫ xi

−∞
p(xi;hi)dxi

we see that this is an autoregressive flow with z ∼ U([0, 1]) as base distribu-140

tion.141

One main drawback of autoregressive flow is that computation of the
inverse is sequential and cannot be parallelized:

zi = f−1(·;hi)(xi)

in order to invert zi, one must wait until all x<i have been inverted in order142

to have access to z<i information required in the parametrization of hi.143

A modification, called Inverse Autoregressive Flow moves the issue ”to the
other side” (does not solve the issue [4]) such that inversion is parallelizable,
but not the generative direction. IAF redefines the conditioning variables:

xi = f(zi;hi)

hi = hi(x<i)

the information or correlation among these variables learned are still the144

same, thus we expect the same expressive power as AF.145

Page 11

Hongli Zhao Note

3.5.1 special case: elementwise flow146

To make parallelization always possible, one can also consider flowing each
variable independently of all others, namely:

xi = f(zi)

which is the same as autoregressive flow but with no conditioning on any
variables. This limits expressive power as it removes mixing in between
variables, but it is highly parallelizable with very cheap determinant:∣∣∣∣det

(
dx

dz

)∣∣∣∣ =
d∏
i=1

dxi
dzi

3.6 Continuous-Time Flow147

So far the flows that we have discussed are characterized by stages of discrete
applications of finite transformations fi:

x = fK ◦ fK−1 ◦ · · · f2 ◦ f1(z)

we can naturally consider the indices {1, 2, · · · , K} to be discrete time snap-
shots of a continuous flow ft in the space of diffeomorphisms, where the group
algebra is ft1 ◦ ft2 = ft1+t2 to reflect the fact that compositions of two flows
that are infinitesmally close in time is still a valid flow. Equivalently one can
consider the discrete compositions to be evolutions of the base distribution
z ∼ pZ(z):

z1 = id(z0)

z2 = f1(z1)

z3 = f2(z2)

...

zK+1 = fK(zK)

x = zK+1

which is equivalent to discretizing a continuous underlying ODE:

d

dt
z(t) = f(t, z(t); θ(t))

Page 12

Hongli Zhao Note

Given base distribution z ∼ pZ(z), we can obtain a complex distribution
x ∼ pX(x) by using the fundamental theorem of calculus:

x = zT = z0 +

∫ T

0

f(t, z(t); θ(t))dt = z +

∫ T

0

f(t, z(t); θ(t))dt

or:

z = x−
∫ T

0

f(t, z(t); θ(t))dt

is our flow in normalizing direction.148

A continuous-time flow has certain advantages over discrete flows:149

• ease of inverse flow.150

• requires less parameters to train than discrete counterparts.151

• flexible tolerance as the granularity can be made arbitrarily fine.152

• optimization only requires ODE solvers, instead of complex graph back-153

propogation.154

Below we present two proofs to demonstrate why ODE flows require fewer155

parameters in training.156

Theorem 3.1 (Change of variables formula, continuous case)157

Let zt ∈ Rd be a random variable distributed according to pZ(zt). And:

dzt
dt

= f(t, zt)

describe the dynamics of zt. If f : R × Rd → Rd is uniformly Lipschitz
continuous in zt and continuous in t, then the log probability follows an
ODE:

∂ log pZ(zt)

∂t
= − tr

(
∂f

∂zt

)
Proof:158

We use the definition of the partial derivative in t:

∂ log p(z(t))

∂t
= lim

ε→0+

log p(z(t+ ε))− log p(z(t))

ε

One can consider the ε time evolution to be a mapping fε : Rd → Rd as
claimed in the beginning of the section (in the space of diffeomorphisms).
We write:

z(t+ ε) = fε(z(t)) := z(t) + ε
dz(t)

dt
+O(ε2) + · · ·

Page 13

Hongli Zhao Note

Certainly:
lim
ε→0+

z(t+ ε) = z(t)

which means:
lim
ε→0+

fε = id

in the space of diffeomorphisms.159

Then by the change of variables formula:

p(z(t+ ε)) = p(fε(z(t))) = p(z(t)) ·
∣∣∣∣det

(
dfε(z(t))

dz(t)

)∣∣∣∣−1

such that:

log p(z(t+ ε)) = log p(z(t))− log

∣∣∣∣det

(
dfε
dz(t)

)∣∣∣∣
Substitute this result back:

∂ log p(z(t))

∂t
= lim

ε→0+

log p(z(t))− log
∣∣det

(
∂fε
∂z

)∣∣− log p(z(t))

ε

= lim
ε→0+

−
log
∣∣det

(
∂fε
∂z

)∣∣
ε

here both numerator and denominator goes to 0 as ε→ 0. Specifically:

lim
ε→0+

log

∣∣∣∣det

(
∂fε
∂z

)∣∣∣∣ = log |det I| = 0

therefore we can use L’Hopital’s rule:

= lim
ε→0+

−
∣∣∣∣det

(
∂fε
∂z

)∣∣∣∣ · ∂∂ε
∣∣∣∣det

(
∂

∂z
fε(z)

)∣∣∣∣
we have shown above:

lim
ε→0+

∣∣∣∣det

(
∂fε
∂z

)∣∣∣∣ = 1

then we are left with:

= − lim
ε→0+

∂

∂ε

∣∣∣∣det

(
∂

∂z
fε(z(t))

)∣∣∣∣
Page 14

Hongli Zhao Note

one of the conditions that the authors from NeurODE implicitly assumed
is that it the continuous flow is orientation-preserving, namely the determi-
nant is positive, otherwise one will run into the issue of absolute value when
differentiating with respect to ε:

∂

∂ε
|det(·)| = ∂

∂ε
det(·)

using this result along with the Jacobi’s formula:

= − lim tr

(
adj(

∂fε
∂z

) · ∂
∂ε

∂

∂z
fε(z)

)
the trace operator is a continuous operator, thus we can exchange limit:

= − tr

(
lim
ε→0+

adj(
∂fε
∂z

) · ∂
∂ε

∂

∂z
fε(z)

)
using again the fact that limε→0+

∂fε
∂z

= I, we obtain finally:

= − tr

(
lim
ε→0+

∂

∂ε

∂

∂z
fε(z)

)
and use the Taylor expansion definition of fε, along with continuity in z and
in t of f , we obtain:

= − tr

(
lim
ε→0+

∂

∂ε

∂

∂z
(z + ε

∂z

∂t
+O(ε2) + · · ·)

)

= − tr

(
lim
ε→0+

∂

∂z

∂

∂ε
(z + ε

∂z

∂t
+O(ε2) + · · ·)

)
= − tr

(
lim
ε→0+

∂

∂z
(
∂z

∂t
+O(ε) + · · ·)

)
we use the original ODE to replace ∂z/∂t = f(t, z(t)). Then we have:

= − tr

(
∂f(t, z(t))

∂z

)
without the need to compute the determinant.160

Page 15

Hongli Zhao Note

Concerning optimization of a cost function L(·), one needs to backpro-
pogate the gradients at each layers in order to optimize the parameters. In
the discrete case for one hidden layer:

z → x := f(z)→ L(f(z))

we need the gradients:

(
∂L

∂z
)T = (

∂L

∂x
)T · ∂x

∂z

the transposes are to cover the fact that ∂x
∂z

is a Jacobian matrix.161

In the continuous case one can do the same. Naively, a continuous flow162

can be considered as a network with infinitely many layers, hence the last163

theorem describing the continuous evolution of the gradient.164

Theorem 3.2 (continuous version of backpropogation) Let the continuous
dynamics of zt = z(t) be defined as before. Define the continuous version of
the gradient of the cost function with respect to the state z(t):

a(t) =
∂L

∂z(t)

then it satisfies the ODE:

d

dt
a(t) = −a(t)T

∂f(t, z(t))

∂z(t)

Proof: The key to the proof is to somehow convert this continuous form165

into a discrete form on an infinitesimal scale (an infinitesimally close discrete166

layer), and we can use the discrete form of the backpropogation from before.167

Evolve the z(t) dynamics by ε in time:

z(t+ ε) = z(t) +

∫ t+ε

t

f(t, z(t))dt ≈ z(t) + εf(t, z(t)) +O(ε2)

again similar as before, we can consider this in the space of diffeomorphisms:

fε(z) := z(t) + εf(t, z(t)) +O(ε2)

Now we essentially have a hidden layer, z(t+ ε), which yields:

dL

dz(t)
=

dL

dz(t+ ε)
· dz(t+ ε)

dz(t)

Page 16

Hongli Zhao Note

Now use the definition of derivative:

d

dt
a(t) = lim

ε→0+

a(t+ ε)− a(t)

ε

= lim
ε→0+

∂L
∂z(t+ε)

− ∂L
∂z(t)

ε
= lim

ε→0+

1

ε
(

∂L

∂z(t+ ε)
− ∂L

∂z(t+ ε)
· ∂z(t+ ε)

∂z(t)
)

= lim
ε→0+

ε−1(
∂L

∂z(t+ ε)
(I − ∂

∂z(t)
(z(t) + εf(t, z(t)) +O(ε2))))

by Taylor expansion.

= lim
ε→0+

ε−1(
∂L

∂z(t+ ε)
(I − I − ε∂f(t, z(t))

∂z(t)
+O(ε2)))

moving ε−1 inside the parenthesis:

= − lim
ε→0+

(
∂L

∂z(t+ ε)

∂f(t, z(t))

∂z(t)
+O(ε)

)
= − ∂L

∂z(t)
· ∂f(t, z(t))

∂z(t)

then use the fact that z(t + ε) → z(t) as ε → 0, we finally obtain the last168

equality as desired.169

The fact that the above two problems can be solved by an ODE solver im-170

plies that density evaluation and sampling can be both made symmetrically171

efficient [1] [3].172

References173

[1] Tian Qi Chen et al. “Neural Ordinary Differential Equations”. In: CoRR174

abs/1806.07366 (2018). arXiv: 1806.07366. url: http://arxiv.org/175

abs/1806.07366.176

[2] Christina Gao, Joshua Isaacson, and Claudius Krause. “i- flow: High-177

dimensional integration and sampling with normalizing flows”. In: Ma-178

chine Learning: Science and Technology 1.4 (Nov. 2020), p. 045023. issn:179

2632-2153. doi: 10.1088/2632-2153/abab62. url: http://dx.doi.180

org/10.1088/2632-2153/abab62.181

[3] Will Grathwohl et al. FFJORD: Free-form Continuous Dynamics for182

Scalable Reversible Generative Models. 2018. arXiv: 1810.01367 [cs.LG].183

Page 17

https://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1806.07366
https://doi.org/10.1088/2632-2153/abab62
http://dx.doi.org/10.1088/2632-2153/abab62
http://dx.doi.org/10.1088/2632-2153/abab62
http://dx.doi.org/10.1088/2632-2153/abab62
https://arxiv.org/abs/1810.01367

Hongli Zhao Note

[4] Jonathan Ho et al. Flow++: Improving Flow-Based Generative Models184

with Variational Dequantization and Architecture Design. 2019. arXiv:185

1902.00275 [cs.LG].186

[5] Ivan Kobyzev, Simon Prince, and Marcus Brubaker. “Normalizing Flows:187

An Introduction and Review of Current Methods”. In: IEEE Transac-188

tions on Pattern Analysis and Machine Intelligence (2020), pp. 1–1.189

issn: 1939-3539. doi: 10 . 1109 / tpami . 2020 . 2992934. url: http :190

//dx.doi.org/10.1109/TPAMI.2020.2992934.191

[6] Jakob Kruse et al. HINT: Hierarchical Invertible Neural Transport for192

Density Estimation and Bayesian Inference. 2021. arXiv: 1905.10687193

[stat.ML].194

[7] George Papamakarios et al. Normalizing Flows for Probabilistic Model-195

ing and Inference. 2021. arXiv: 1912.02762 [stat.ML].196

[8] Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference197

with Normalizing Flows. 2016. arXiv: 1505.05770 [stat.ML].198

Page 18

https://arxiv.org/abs/1902.00275
https://doi.org/10.1109/tpami.2020.2992934
http://dx.doi.org/10.1109/TPAMI.2020.2992934
http://dx.doi.org/10.1109/TPAMI.2020.2992934
http://dx.doi.org/10.1109/TPAMI.2020.2992934
https://arxiv.org/abs/1905.10687
https://arxiv.org/abs/1905.10687
https://arxiv.org/abs/1905.10687
https://arxiv.org/abs/1912.02762
https://arxiv.org/abs/1505.05770

	Notations, Definitions and Theorems
	Normalizing Flow as a Generative Model
	Forms of Normalizing Flow and Computational Complexity
	Computational Considerations
	Expressiveness of Normalizing Flow
	Affine Normalizing Flow: Building Block
	Coupling Layers
	Nonlinearity "for Free"

	Autoregressive Flow
	special case: elementwise flow

	Continuous-Time Flow

