© o N o o

11

12

13

14

15

16

17

18

19

20

21

22

Normalizing Flow: An Introduction

Hongli Zhao

5:00 pm, June 16, 2021, Zoom (Internal Group Seminar)

Abstract

In this short note, we present normalizing flow as an expressive
and powerful generative model under which both sampling and den-
sity evaluations are efficiently able to be implemented. Possible appli-
cations of normalizing flow can be found in solving high-dimensional
partial differential equations (PDE).

1 Notations, Definitions and Theorems

Below we present some common notations and results that we will use in
the following sections. We assume that the audience has an application-
focused understanding of probability theory (but not the measure-theoretic
counterpart) on a similar level of UC Berkeley course [EECS 126 With
machine learning applications, we assume the audience has attained the level
of understanding on par with Berkeley course [CS 189

In the probabilistic setting, we denote x ~ px(x) as "random variable x
is distributed according to probability distribution with density px(z)”. Let
(Q, F,P) denote a probability space. For the probability density function
Px, in certain cases we encounter the fact that it may be parametrized (such
as in the setting of a Gaussian normal NV (u, o). We denote 6 as our class of
parameters, and py(z) as the density.

A random variable X is a mapping from Q — R? We will explicitly
distinguish cases where measure theory needs to be considered. Otherwise,
x can be assumed as in RY, and let:

E[z] = /Qx px(2)dz

1

23

24

25

Hongli Zhao Note

denote the expectation or expected value of © ~ px(z). Furthermore, in
numerical methods, oftentimes we must seek approximations to true values,
we use the hat notation to denote the approximate value. For example, an
approximation to the expected value is often done by sampling a probability
distribution and taking the average over sample points {z;}¥:

. 1 X
i=1

Another commonly used quantity is the variance, defined as the expected
squared deviation from the mean:

Var[z] =E[(z — E[z])?]

In certain cases we may find it notationally convenient to simplify the
writing of the above quantities, we will denote in certain cases the expectation
% or (z), and variance o2. Finally, when the probabilistic models become
increasingly complex, it is more important and appropriate to clarify what
probability density is in question, with the additional subscript notations:

2
[I’} x~px’ Tanpx

e A random variable x can be either discrete or continuous. In the con-

tinuous setting (d = 1):

P(x € [a, b)) :/ px(z)dx

[a,]

e In continuous space where theories are derived, integration is [. The
equivalent version of it in discrete space where theories are verified using
data, we use > .

e (Normalizing) A valid probability density is nonnegative and has unit
mass. In order to learn probability densities from data, it is imperial that

we need to enforce:
/ p(z)dr =1
]Rd

Z plz;) =1

or:

Page 2

26

27

28

29

Hongli Zhao Note

e (Chain rule of probability) High-dimensional settings often make many
operations computationally intractable. We are able to decompose a multi-
variate density into a sequence of single variable ones:

d
p(xla Lo, - 7$d) = Hp<xj|$17 O PR >xj*1)
j=1
where: ()
pP\X1,T2, ", %5
plxi|lre;) =
(]| <]) P($1,x27"‘ ,33']'71)
where all missing variables x4, - -+ , x4 are "integrated out”. Namely p(z<;)

is in fact a marginal density:

(<)) = / p(@1, 29, wa)djir - dag
Rx---xR

e (Probability change of variable formula, d = 1) Let = ~ px(x) and z =
f(z) or x = f~1(2) where f is a mapping z +— z (invertible, differentiable).
Then the density of z can be derived as:

dx

pz(2) = px(z) - dz

the derivation is given by considering the CDF:
Fx(x) :/ px(z)dx
[—OO,:E]

and using * = f~1(2) (to transform the density), the inverse function theorem
(to correct for unit mass), and £ Fy(z) = px(z) (to recover the PDF). It is
possible to define change of variables for general measurable functions, which
we will skip for the purpose of this discussion.

e (Probability change of variable formula, general d) In multivariate = €
R?, the change of variable formula can be written by replacing the definition
of derivative and absolute value.

fiRT =R
dz
o = J1(2)

Page 3

Hongli Zhao Note

|-| = det()
det(A™") = det(A)™"!

% for nonsingular A € R¥4, Here ‘fl—ﬁ} can be considered as volume correction.
e (closure under composition) Let { i}, be a sequence of invertible and
differentiable functions, one can show that:

f=fuofu—r10---0fi

is also invertible and differentiable, with inverse:

fr=fto o fif

and chain rule of differentiation:

a where fy(z) = 2.
2 Below is a result that demonstrates the benefit of a normalizing flow, that
;3 evaluating the expected value of a transformed quantity does not require us
1 to know the (potentially complex) distribution.
e (Law of Unconscious Statistician) let z ~ pz(z) which is known and
easy to evaluate. Consider the mapping x = f(z), with px being difficult to
evaluate or unknown, then E[Jc] is still computable by:

B[] =E[/(2)] = [f) palz)dz

e (Inverse CDF Sampling) Let x = (x1, 9, -+ , z4) € R?, by product rule:

d

px($1, To, - ,l’d) = Hp($z‘|$17$27 T 7515i—1)
i=1

The CDF of each conditional distribution is given by:

Fx(zilx<;) Z/ p(xi|r<;)dz;

—00

let f; = F'x(-|x~;) and consider the invertible, differentiable transformation:

Page 4

35

36

37

38

39

40

41

42

43

44

Hongli Zhao Note

this forms a mapping from R? — [0, 1]¢. This mapping is also invertible as:
z; = [, z‘_l(zi)

since the CDF is monotonic. Finally, regarding the distribution of z, we have
by the change of variables formula that:

dz

however, the Jacobian is lower triangular because the conditional distribution
x; has no dependence on x~;. Specifically on the diagonals:

dr; = d_xlfz(xl)

which is by definition the conditional CDF, which yields:

-1

pz(2) = px(x)

= p($i|$<i)

such that the determinant is:

dz

by product rule. This means:

d
= Hp(xl|x < Z) :p(xlax27' o axd)
=1

pz(z) = px(x) -

and implies that z is U([0, 1]).

One can consider the above derivation as the reason why normalizing flow
is expressive enough to capture any distribution x ~ px(z) may follow. Fur-
thermore, in other literatures, the generative direction is named conditional
distribution sampling method where a random vector © = (1, xa, -+ ,x4) iS
iteratively generated via inverse CDF at each step. The two directions refer
to the same underlying process.

The following is a result from matrix calculus that we can make use in a
proof of continuous-time flows:

e (adjugate matrix) The adjugate matrix of an n X n matrix is:

adj(A) = 7 = det(A) - A™*

where C' is the cofactor matrix.
e (Jacobi’s formula) Let A(t) be a differentiable map R — R™ ™, then:

%A(t) — tr Gdj(A(t))%@)

Page 5

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

Hongli Zhao Note

2 Normalizing Flow as a Generative Model

In applications of machine learning, one major goal is to discover under-
lying patterns of data. In generative models, we achieve this by directly
approximating the probability distribution from which samples are drawn,
and provide an efficient way to generate or predict new samples. In short, the
main goals we would like to achieve with a good generative probabilistic
model [7] [5] is as follows:

e provide a satisfactory fit and generalization of training data with un-
known distribution

e computationally convenient sampling (prediction of new data) and den-
sity evaluation from learned model, especially in the high-dimensional
case [2].

e qualitatively explainable latent space / low-dimensional representation

In the following sections, we briefly discuss why normalizing flow can
achieve these criterion, and common directions for building such tools.

3 Forms of Normalizing Flow and Computa-
tional Complexity

In the following formulations we discuss the methods in the generative direc-
tion, which also gives us an algorithm of sampling from a complex distribution
once we have trained a flow:

(1) sample latent dataset z is according to desired pz(z).

(2) obtain x = f(z) as samples from px(z).

Equivalently one can also describe the process in the normalizing di-
rection, which also describes how normalizing flow can be used for density
evaluation:

(1) dataset = is acquired.

(2) evaluate px(z) by evaluating pz(f~'(x)) and volume correction.

3.1 Computational Considerations

In the following method presentations, there is a balance between the ease

of:

Page 6

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

Hongli Zhao Note

e density evaluation: cost of computing ‘det (%) ‘ The naive expansion of
determinant of a dense matrix is O(n!). One also considers LU factorization
or SVD decomposition, which costs O(n?) at least. Research efforts have
been given to consider special ‘é—"g matrix forms (such as triangular, diagonal,
or block diagonal) to reduce time complexity.

e sampling: cost of computing f~!. The specific cost depends on the
choice of f. For instance, when f = Az + b is an affine transformation, and
A is dense, computing f~! amounts to the cost of finding A~!, which by
Gaussian elimination is at least O(n?). In certain cases (such as using neural
networks), the inversion is intractable.

e preservation of dimensions: as dimensions between invertible maps must
be the same, cost of evaluating f(z) itself scales with d.

3.2 Expressiveness of Normalizing Flow

We demonstrate the result in d = 1. Multivariate PDF can be formed simi-
larly by conditional distribution sampling. Inverse CDF sampling is a special
case of normalizing flow. Namely, regardless of the complexity of px(z), the
target distribution, we can always find the cumulative distribution function
as a suitable flow. CDFs are monotonically increasing and differentiable, and
therefore would satisfy the desired properties.

Precisely, the inverse CDF sampling can be described as:

(1) generate u ~ U(]0, 1]).

(2) let f = F' where Fy is the CDF of p.

(3) z = f(u) produces the desired distribution x ~ px(x).

By inverse CDF sampling, we have demonstrated that there always exists
an invertible map f such that f(z) can be flexibly expressive. In other
words, any complex distribution can be normalized as a uniform distribution;
this also implies that the base distribution does not need to be U([0, 1]), as
compositions of flows form other flows, as demonstrated in [section 1} To
transform an arbitrary distribution pz to another arbitrary distribution py,
one can always consider:

Px f—1> U([O; 1]) £>pz

3.3 Affine Normalizing Flow: Building Block
0 =(A,b) € R” x R

Page 7

Hongli Zhao Note

o where we require A to be invertible.

r=f(z)=Az+b
ﬁ_AT

dz
The linear flow has several limitations both in expressiveness and com-

putations. Suppose z ~ N (0, I), then:

1
 [det(4)]

1
 [det(4)]

px(x) pz(f () pz(A7H(z = b))

We have the multivariate Gaussian normal distribution:
—d/2 I
pz(z) = (2m) Fexp | — 52z
Then:

) = 1 . ﬂ_d/2ex —
pte) = gy e

N | —

(A (o — b)) (A b)))

1 1 T T\—1
= exp| —=(x —b)" (AA x—0b)
(27)4/2|det(A)|?|det(AT)| "/ ((= A4 — D)
w0 which means z ~ N (b, AAT).
Furthermore, compositions of linear flows result in linear flows. Let

fi(z) = Az + b, fo(z) = Cz + d:

fo(fi(2)) =C(Az+b)+d=CAz+ (Cb+d)

101 Finally, training O(d® + d) parameters directly, evaluation of density and
102 sampling are inefficient in high dimensions, as both computing A~! and
w03 |det(A)| requires O(d®) flops. Further restrictions on A can be made in
s order to simplify the computations (such as diagonal or triangular A).

ws 3.4 Coupling Layers

ws A coupling layer can benefit us in high-dimensions in terms of computational
w7 cost of evaluating the determinant while only using affine transformations.
s This is done by moving work to the region of the Jacobian that is "free of

Page 8

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

Hongli Zhao Note

charge”, by taking advantage of the observation that the determinant of a
triangular matrix is the product of its diagonals.
A coupling layer takes the general form (partitioning z) into two parts:

Z<m
Z = -
Z>m

o=l = e)

where f is invertible and h has no restrictions. It is the restriction-free h(-)
that brings nonlinearity at a low cost of training and evaluation. We can
explicitly compute the form of the Jacobian:

dz B I, O
dz —ZZ;" D

where D is a matrix with entries Zx%.
This is an interesting choice as we are essentially allowed to have any
nonlinearity without it causing computational cost to skyrocket in high di-

mensions, as the determinant is:

d d
det (d—Z) ’ = I;In d—zif(z>m; h(2<m))

and define:

and h(z<;,) has no dependence on z,, and therefore does not need to be
differentiated. Furthermore, the volume correction only requires the deter-
minant, rather than the Jacobian matrix itself, therefore we would not have
to be concerned with the lower triangular part, even in the case where h is
non-differentiable.

3.4.1 Nonlinearity ”for Free”

Due to this result, for example, the [8] paper was able to generate
impressive results using only additive coupling layer and learned h as a neural
network, without adding computational costs.

Since the lower triangular region can help us perform operations ”for
free”, there are research efforts focused on populating that region as much

as possible. The HIN'T|6] paper offers a recursive construction. It has been

Page 9

124

125

126

127

128

129

130

131

132

133

134

135

136

137

Hongli Zhao Note

shown that multiple layers of coupling flow is an wniversal approzimator,
however one needs to enforce sufficient " mixing”, namely permuting the state
variables so that the information from each can be learned. A permutation
of variables can be viewed as a volume-preserving invertible map as well.

3.5 Autoregressive Flow

Autoregressive flow is one of the commonly used flow structures that have
conveniently computable determinant. This is done by letting the flow map
of x; depend on certain parameters generated via all previous latent variables
Z<; but not "future ones” z>,.

It takes the general form:

v = f(z, hi)
hi = hi<z<i)

here f needs to be strictly monotonic, and h; serves as parametrizations.
Similar to the coupling layers, the Jacobian matrix also takes a lower tri-
angular form, since x; = f(z;, hi(z1, 22, -+ , z;_1)) has dependence on all the
previous variables, the upper triangular derivatives are all 0:

Oz1 0
0
dx -
dz A 0y
8Zd

where A is the rest of the derivatives, however, we do not need to explicitly
know its form (and hence saving us computations) since the determinant is
still the diagonal product:

Autoregressive flows can be shown to be universal approximators, and
equivalently, any autoregressive model is an autoregressive flow of one layer.
Due to the lower triangular property, similar to coupling layers, h(-) can also
be quite flexible (it does not need to be invertible).

The training process of an autoregressive model can be understood as the
following;:

Page 10

139

140

141

142

143

144

145

Hongli Zhao Note

(1) Decompose the joint probability by product rule.

d

d
p(xhx% tee ,ZEd) - Hp(xi’xbx% U 7‘ri—1) - Hp(x1|x<l)
=1

i=1
(2) Model p(x;|z~;) as a parametrized single variable distribution (such
as a normal, or mixture Gaussian):

p(wi|r<i) = p(wi; hi(r<i))
By the conditional distribution sampling result, let:
z; = f(zi, hi) = Fx'(zi5 h)

where: o
—00
we see that this is an autoregressive flow with z ~ U([0, 1]) as base distribu-
tion.
One main drawback of autoregressive flow is that computation of the
inverse is sequential and cannot be parallelized:

2= [ha) (ws)

in order to invert z;, one must wait until all x_; have been inverted in order
to have access to z.; information required in the parametrization of h;.

A modification, called Inverse Autoregressive Flow moves the issue "to the
other side” (does not solve the issue [4]) such that inversion is parallelizable,
but not the generative direction. IAF redefines the conditioning variables:

v = f(25; hi)

h; = hz(l’@)

the information or correlation among these variables learned are still the
same, thus we expect the same expressive power as AF.

Page 11

146

147

Hongli Zhao Note

3.5.1 special case: elementwise flow

To make parallelization always possible, one can also consider flowing each
variable independently of all others, namely:

v = f(z)

which is the same as autoregressive flow but with no conditioning on any
variables. This limits expressive power as it removes mixing in between
variables, but it is highly parallelizable with very cheap determinant:

d
dx dx;

3.6 Continuous-Time Flow

So far the flows that we have discussed are characterized by stages of discrete
applications of finite transformations f;:

r=frxofxk10--fa0 fi(2)

we can naturally consider the indices {1,2, -+, K} to be discrete time snap-
shots of a continuous flow f; in the space of diffeomorphisms, where the group
algebra is f;, o fi, = fi,++, to reflect the fact that compositions of two flows
that are infinitesmally close in time is still a valid flow. Equivalently one can
consider the discrete compositions to be evolutions of the base distribution

z~pz(2):

21 = Zd(Z())
2 = fi(z1)
z3 = f2(22)

ZK+1 = fK(ZK)
T = ZK+1

which is equivalent to discretizing a continuous underlying ODE:

d
J2(t) = F(t,2(1); 0(1))

Page 12

148

149

150

151

152

153

154

155

156

157

158

Hongli Zhao Note

Given base distribution z ~ pz(z), we can obtain a complex distribution
x ~ px(z) by using the fundamental theorem of calculus:

x =27 =2 —I—/O f(t, 2(t);0(t))dt = z + /0 f(t, =(t);0(t))dt
z=x— /o ft, z();0(t))dt

is our flow in normalizing direction.

A continuous-time flow has certain advantages over discrete flows:

e ease of inverse flow.

e requires less parameters to train than discrete counterparts.

e flexible tolerance as the granularity can be made arbitrarily fine.

e optimization only requires ODE solvers, instead of complex graph back-
propogation.

Below we present two proofs to demonstrate why ODE flows require fewer
parameters in training.

Theorem 3.1 (Change of variables formula, continuous case)

Let z, € R? be a random variable distributed according to pz(2). And:

dz
d_tt = (tv Zt)

describe the dynamics of z. If f : R x R? — RY is uniformly Lipschitz
continuous in z; and continuous in t, then the log probability follows an

ODE:
Ologpy(z) __ (0]
(9t 8zt
Proof:

We use the definition of the partial derivative in ¢:

Ologp(=(t)) _ |, logp(z(t +¢)) —logp(=(1))

ot e—0t €

One can consider the e time evolution to be a mapping f. : R — R? as
claimed in the beginning of the section (in the space of diffeomorphisms).
We write:

dz(t)

2)
o + O(€) +

2t +€) = ful=() = 2(t) + €

Page 13

Hongli Zhao Note

Certainly:
li t = z(t
lim 2(t +€) = 2(¢)
which means:
lim f.=1id
e—0t

in the space of diffeomorphisms.
Then by the change of variables formula:

-1

p(z(t+¢€)) = p(fe(2(2))) = p(z(1)) - ‘det (%)
such that:)
logp(z(t +€)) = logp(z(t)) — log |det <dzj(c;)) ‘

Substitute this result back:

dlogp(=(t)) lim log p(2(t)) —10g|det(%§)

ot e—0t €

— log p(z(t))

~ lim _10g|det(%)
e—0t €

here both numerator and denominator goes to 0 as € — 0. Specifically:

det(aﬂ)' =log|det I| =0

lim lo
e—0t &

0z

therefore we can use LL’Hopital’s rule:

Ofe 0 0

det(55)‘ " Be det(&fe(z)ﬂ
af\|

det< 5)‘ =

det(%fe(z(t)))‘

= lim —
e—0t

we have shown above:

lim
e—0t

then we are left with:

=— lim —
e—0+ O€

Page 14

Hongli Zhao

one of the conditions that the authors from NeurODE implicitly assumed
is that it the continuous flow is orientation-preserving, namely the determi-
nant is positive, otherwise one will run into the issue of absolute value when

differentiating with respect to e:
0 0
—|det(-)| = — det(-
£oldet()] = £ det()

using this result along with the Jacobi’s formula:

Ofe, 00
_ _hmtr(adj(aj;) &%ﬁ(z))

the trace operator is a continuous operator, thus we can exchange limit:

o af a0
= e tim a5 1))

using again the fact that lim,_,o+ % = I, we obtain finally:

— (1 2 10)

e—0+ Oe 0z

and use the Taylor expansion definition of f., along with continuity in z and

in t of f, we obtain:

B A, 9z)
——“(3&@@”65”“>+'“>)

_ .00 0z)
—‘“@%@a@“a“}(e>+"'>)

:—tr(lim 2(%+O(d+---))

es0t 0z

we use the original ODE to replace 0z/0t = f(t, z(t)). Then we have:

- 2L20)

1o without the need to compute the determinant.

Page 15

161

162

163

164

165

166

167

Hongli Zhao Note

Concerning optimization of a cost function L(-), one needs to backpro-
pogate the gradients at each layers in order to optimize the parameters. In
the discrete case for one hidden layer:

z—=x:= f(z) = L(f(2))
we need the gradients:
OL.p OL.p Oz
(5,) =(5.) 5,
the transposes are to cover the fact that % is a Jacobian matrix.
In the continuous case one can do the same. Naively, a continuous flow

can be considered as a network with infinitely many layers, hence the last
theorem describing the continuous evolution of the gradient.

Theorem 3.2 (continuous version of backpropogation) Let the continuous
dynamics of zy = z(t) be defined as before. Define the continuous version of
the gradient of the cost function with respect to the state z(t):

oL

then it satisfies the ODE:

d o\ _ r0f (L, 2(1)
aa(t) = —af(t) 920)

Proof: The key to the proof is to somehow convert this continuous form
into a discrete form on an infinitesimal scale (an infinitesimally close discrete
layer), and we can use the discrete form of the backpropogation from before.

Evolve the z(t) dynamics by € in time:

t+e€
At =2+ [FEa0)dt (0 + et (0) + OE)
t
again similar as before, we can consider this in the space of diffeomorphisms:
fo(2) = 2(t) + ef(t, 2(t)) + O(e)
Now we essentially have a hidden layer, z(¢ + €), which yields:
dL dL dz(t + ¢)

dz(t) dz(t+e€) dz(t)

Page 16

168

169

170

171

1

3

2

173

174

175

176

177

178

180

181

182

183

Hongli Zhao Note

Now use the definition of derivative:

d . a(t+e) —alt)
%a(t) N elir(?" €
oL oL
iy 220H 20 1(oL 0L _8z(t+e))
e—0+ € —0t € 0z(t+e¢€) Oz(t+e) 0z(t)
oL

=1l -1 I
BT

by Taylor expansion.

0 2
= o GO +f(E2(0) + O(E))

oL 0F(t,2(1)

b O

moving € ! inside the parenthesis:

oL 9f(t, (1)) 0L Of(t ()
(8z(t+e) 02(1) +O(6))“az(t)' 02(0)

= — lim
e—0T

then use the fact that z(t +¢) — 2(f) as e — 0, we finally obtain the last
equality as desired.

The fact that the above two problems can be solved by an ODE solver im-
plies that density evaluation and sampling can be both made symmetrically
efficient |1] [3].

References

[1] Tian Qi Chen et al. “Neural Ordinary Differential Equations”. In: CoRR
abs/1806.07366 (2018). arXiv: 1806.07366. URL: http://arxiv.org/
abs/1806.07366.

[2] Christina Gao, Joshua Isaacson, and Claudius Krause. “i- flow: High-
dimensional integration and sampling with normalizing flows”. In: Ma-
chine Learning: Science and Technology 1.4 (Nov. 2020), p. 045023. 1SSN:
2632-2153. DOI: [10.1088/2632-2153/abab62. URL: http://dx.doi.
org/10.1088/2632-2153/abab62.

3] Will Grathwohl et al. FFJORD: Free-form Continuous Dynamics for
Scalable Reversible Generative Models. 2018. arXiv:(1810.01367 [cs.LG].

Page 17

https://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1806.07366
https://doi.org/10.1088/2632-2153/abab62
http://dx.doi.org/10.1088/2632-2153/abab62
http://dx.doi.org/10.1088/2632-2153/abab62
http://dx.doi.org/10.1088/2632-2153/abab62
https://arxiv.org/abs/1810.01367

184

185

186

187

188

189

190

191

Hongli Zhao Note

[4]

Jonathan Ho et al. Flow++: Improving Flow-Based Generative Models
with Variational Dequantization and Architecture Design. 2019. arXiv:
1902.00275 [cs.LG].

Ivan Kobyzev, Simon Prince, and Marcus Brubaker. “Normalizing Flows:
An Introduction and Review of Current Methods”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2020), pp. 1-1.
ISSN: 1939-3539. DOI: 10 . 1109 / tpami . 2020 . 2992934, URL: http:
//dx.doi.org/10.1109/TPAMI.2020.2992934.

Jakob Kruse et al. HINT: Hierarchical Invertible Neural Transport for
Density Estimation and Bayesian Inference. 2021. arXiv: 1905. 10687
[stat.ML].

George Papamakarios et al. Normalizing Flows for Probabilistic Model-
ing and Inference. 2021. arXiv: 1912.02762 [stat.ML].

Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference
with Normalizing Flows. 2016. arXiv: |15605.05770 [stat.ML].

Page 18

https://arxiv.org/abs/1902.00275
https://doi.org/10.1109/tpami.2020.2992934
http://dx.doi.org/10.1109/TPAMI.2020.2992934
http://dx.doi.org/10.1109/TPAMI.2020.2992934
http://dx.doi.org/10.1109/TPAMI.2020.2992934
https://arxiv.org/abs/1905.10687
https://arxiv.org/abs/1905.10687
https://arxiv.org/abs/1905.10687
https://arxiv.org/abs/1912.02762
https://arxiv.org/abs/1505.05770

	Notations, Definitions and Theorems
	Normalizing Flow as a Generative Model
	Forms of Normalizing Flow and Computational Complexity
	Computational Considerations
	Expressiveness of Normalizing Flow
	Affine Normalizing Flow: Building Block
	Coupling Layers
	Nonlinearity "for Free"

	Autoregressive Flow
	special case: elementwise flow

	Continuous-Time Flow

