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• Variational Inference (VI) is widely applied 
in approximating high-dimensional 
probability distributions from data.

• Normalizing Flow (NF) approximates a 
distribution as pushforward of a base 
distribution (e.g., Gaussian) via an 
invertible map

• Performance of NF relies on base 
distribution being absolutely continuous
with respect to the target. Difficult to learn 
when target has complex structure (e.g., 
multi-modality).

• Tensor-train (TT) can represent a high-
dimensional distribution in a low-
parametric form achievable by linear 
algebra routines.

• We propose to combine TT initialization 
with the expressiveness of NF to achieve 
more accurate approximations while 
supporting efficient sampling and density 
evaluation.

• Given un-normalized target density 
ℎ(𝒙) with 𝒙 ∈ ℝ𝒅 with true density 
defined as:

𝑝 𝒙 =
1
𝑍 ℎ(𝒙)

where 𝑍 is normalizing constant. 
• Optimize the variational lower 

bound over a family of distributions:
min
𝜽
[𝐷"#(𝑝𝜽| 𝑝 − log 𝑍]

• We parameterize 𝑝𝜽 using a flow-
based model:

𝑝𝜽 𝒙 ≔ 𝑝$ 𝑓𝜽%& 𝒙 ⋅ |𝐃𝐟𝜽%&|

where 𝑓# can be taken as a deep 
neural network (DNN). 𝑝$ is a simple, 
known base distribution
• Empirical loss function estimated 

from 𝑁 samples:

min
𝜽

"
#
∑$%"# [log 𝑝& 𝑓𝜽'"(𝒙 𝒊 ) − log |𝐃𝐟𝜽 | − log ℎ(𝒙 𝒊 )]

• Visualization of samples from learned 
distributions 

Base Distribution using Squared-TT Ansatz
• Given a black-box to evaluate the un-normalized ℎ, we propose to obtain an initial 

approximation to the target using multivariate basis expansion 𝑠!! ≈ 𝑠 = ℎ

𝑠!! 𝑥", … , 𝑥# = (
$!,…,$"

ℬ 𝑖", … , 𝑖# 𝜙$! 𝑥" ⋯𝜙$"(𝑥#)

• Coefficient tensor ℬ is computed by projecting onto the orthogonal polynomial product 
basis ∏'("

# 𝜙$# and evaluating on a quadrature given by quadrature 𝑥$
" , … , 𝑥$

)$ and 

weights 𝑤$
" , … , 𝑤$

)$ 1 ≤ 𝑖 ≤ 𝑑 :.

ℬ 𝑖", … , 𝑖# = (
'!,…,'"

𝑤"
('!)⋯𝑤#

('")𝑠 𝑥"
'! , … , 𝑥#

('") 𝜙$! 𝑥"
'! ⋯𝜙$" 𝑥#

'"

• 𝑠 𝑗", … , 𝑗# ≔ 𝑠 𝑥"
'! , … , 𝑥#

('") is evaluated using the cross algorithm [1] as a TT. 
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Computing coefficient tensor

• Define base 𝑝!! ≔ 𝑠!!, / 𝑠!! -%
, , which always has unit mass and is non-negative. 

• Putting ℬ in right-left orthogonal form, conditional distribution sampling of the form:
𝑝 𝑥", 𝑥,, … , 𝑥# = 𝑝 𝑥" 𝑝 𝑥, 𝑥" ⋯𝑝(𝑥#|𝑥", … 𝑥#.")

and density evaluations can be achieved in 𝑂 𝑑 .
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N=10000 samples from Tensorizing Flow N=10000 samples from Normalizing Flow

N=10000 samples from Tensorizing Flow N=10000 samples from Normalizing Flow

• Tensor-Train (TT) decomposition is a compression method that generalizes truncated 
singular value decomposition to 𝑑-dimensional arrays. 

• A tensor 𝒜 of size 𝑛# can be decomposed as 𝒜 𝑖", … , 𝑖# ≈ 𝒜" : , 𝑖", : ⋯𝒜# : , 𝑖# , : , 
where each 𝒜/ is a 3-dimensional tensor that has size 𝑛𝑟,, with 𝑟 < 𝑛

• Furthermore, each core can be put in right-left canonical form through QR 
decomposition.

• Comparison of estimated lower bound, − log 𝑍, 
computed on N=10000 data points

• Combining low-parametric initialization of 
base distribution in flow-based models as the 
squared TT format and a flexible push-
forward map 𝑓𝜽 gives an efficient and 
expressive generative model.

Future Work
• General learning tasks where model 

response is required to be non-negative.

• More complex kernel functions.


