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Motivation Tensor-Train Decomposition Accuracy Comparison
+ Variational Inference (VI) is widely applied  Tensor-Train (TT) decomposition is a compression method that generalizes truncated * Visualization of samples irom learned
in approximating high-dimensional singular value decomposition to d-dimensional arrays. distributions
orobability distributions from data. » A tensor A of size n% can be decomposed as Aliy, ..., ig] = Az, i, : ] Agl:,ig ], -
» Normalizing Flow (NF) approximates a where each A, Is a 3-dimensional tensor that has size nr4, with r <n 1.0
distribution as pushforward of a base » Furthermore, each core can be put in right-left canonical form through QR i
distribution (e.g., Gaussian) via an decomposition. 05
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when target has complex structure (e.g., Base Distribution using Squared-TT Ansatz o oo
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ensor-raim (. ). can represent a high- approximation to the target using multivariate basis expansion sy = s = Vh 50 50
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more accurate approximations while (1) (Nl) Computed on N= 10000 data points
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* Given un-normalized target dertS|ty A ( i]l)’ C(le)) s evaluated using the cross algorithm [1] as a TT. , e
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° Optlmlze the Va”a_tIOnaI _IOV\{er | B”‘h B"“z ........ o B“‘ld—l Bv‘ld « Combining low-parametric initialization of
bound over a family of distributions: S - base distribution in flow-based models as the
meln[DKL (pellp) — log Z] , Computing coefficient tensor squared TT format and a flexible push-
* \We parameterize pg using a flow- * Define base prr = S’IZ"T/“STTllea which always has unit mass and Is non-negative. forward map fy gives an efficient and
based model: » Putting B in right-left orthogonal form, conditional distribution sampling of the form: expressive generative model.
pe(X) == p, (fe_l(x)) . |Df | | | p(x1, X7, ---:xd).: P(?C.1)P(x2|x1) e p(Xglxg, e Xg-1)
where f, can be taken as a deep and density evaluations can be achieved in 0(d)2. (r0, 240 )-plane (X0 x1)-plane Future Work
neural network (DNN). p, is a simple, o |1.5 , 150 « General learning tasks where model
known base distribution G G 1 \ / 100 \ response Is required to be non-negative.
* Empirical loss function estimated b ) ; - More complex kernel functions.
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Schema for conditional distribution sampling Squared TT reconstruotion of high-dimensional distributions. multidimensional arrays
Left: mixture Gaussian (d=30), Right: double Rosenbrock function (d=11)




