Overlapping Schwarz Domain Decomposition in Continuous-Time
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Main Contributions

Generalization for exponential decay of sensitivity
(EDS) of nonlinear control to infinite-dimension setting
Gradient-based optimization methods inspired by
optimize-then-discretize method in optimal control
Extensions to deep learning (e.g. image, PINN)

Main Takeaway: A nonlinear optimization problem
defined on a large domain / time-horizon can be
divided into smaller subproblems that can be
solved independently

Background

Many problems (e.g. power planning, trajectory
tracking, reinforcement learning) involve optimization
of an objective constrained by dynamics

Domain decomposition has long been applied for
solving large-scale linear and nonlinear elliptic PDEs

In constrained optimization, Schwarz methods have
been shown to converge to full problem optimality

But optimization with discretized variables does not
allow adaptive time-stepping or higher-order solvers
Generalizing the result to infinite-dimensional spaces
allow for the design of flexible numerical methods

Problem Formulation
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e Fory=0,1,...,m, define subproblem:
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Figure: Dividing the domain into m = 3
sub-domains with overlaps

where: Z, 4, \ are external parameters, and the modified terminal cost is defined:
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* Find the optimality of each subproblem by solving the coupled system:
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 Update parameters between adjacent subproblems
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Main Proof: Exponential Decay of Sensitivity
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* Sensitivity of optimal solutions (x*,u", A*)to perturbations
locally satisfies linear-quadratic control [1]
e Special case: linear-quadratic control with external data d
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. Under SOSC and uniform complete controllability conditions,
Pontryagin’s minimization principle implies exponentially
convergent linear evolution operator

 Asaresult, perturbations are exponentially damped as one moves
into a domain

. Exists a choice of overlap size T that yields a contractive mapping

Figure: (Left) Overlapping Schwarz
state solution visualization.

(Right) Relative L* error
convergence to global optimal
solution, with varying overlap sizes.
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[ Insight: ResNet is a discretized dynamical system [3] ]
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Figure: Illustrations of ResNets (top:
ResNet for PINN applications;
bottom:ResNet-CNN for image
classification). The terminal costs can be
modified to suit different learning tasks.
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Empirical Study

Task 1: MINIST classification
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Figure 1: MNIST classification (Left: loss convergence; Right: classification
accuracy) with overlapping Schwarz decomposition of 1-3 overlapped layers; the
convergence rate is improved as overlap size increases.

Task 2: Klein-Gordon equation, comparison with Adam and LBFGS
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equation optimized using Adam and
LBFGS. The loss landscape shows
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