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Task 1: MNIST classification
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Main Contributions

• Generalization for exponential decay of sensitivity 
(EDS) of nonlinear control to infinite-dimension setting

• Gradient-based optimization methods inspired by 
optimize-then-discretize method in optimal control

• Extensions to deep learning (e.g. image, PINN)

Main Takeaway: A nonlinear optimization problem 
defined on a large domain / time-horizon can be 
divided into smaller subproblems that can be 
solved independently

Background
• Many problems (e.g. power planning, trajectory 

tracking, reinforcement learning) involve optimization 
of an objective constrained by dynamics

• Domain decomposition has long been applied for 
solving large-scale linear and nonlinear elliptic PDEs

• In constrained optimization, Schwarz methods have 
been shown to converge to full problem optimality

• But optimization with discretized variables does not 
allow adaptive time-stepping or higher-order solvers

• Generalizing the result to infinite-dimensional spaces 
allow for the design of flexible numerical methods 

Problem Formulation
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• Continuous-time nonlinear control

• Constrained optimization

• For                             , define subproblem:

where: are external parameters, and the modified terminal cost is defined:

• Find the optimality of each subproblem by solving the coupled system: 

• Update parameters between adjacent subproblems
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Figure: Dividing the domain into m = 3 
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Patched global solution

Numerical Simulations

• Sensitivity of optimal solutions (𝑥∗, 𝑢∗, 𝜆∗)to perturbations 
locally satisfies linear-quadratic control [1]

• Special case: linear-quadratic control with external data 𝑑

• Under SOSC and uniform complete controllability conditions, 
Pontryagin’s minimization principle implies exponentially 
convergent linear evolution operator

• As a result, perturbations are exponentially damped as one moves 
into a domain

• Exists a choice of overlap size 𝜏 that yields a contractive mapping

Figure: (Left) Overlapping Schwarz 

state solution visualization.

 (Right) Relative 𝐿∞  error 

convergence to global optimal 

solution, with varying overlap sizes.

Insight: ResNet is a discretized dynamical system [3]
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Figure: Illustrations of ResNets (top: 

ResNet for PINN applications; 

bottom:ResNet-CNN for image 

classification). The terminal costs can be 

modified to suit different learning tasks. 
cross-entropy loss 

Task 2: Klein-Gordon equation, comparison with Adam and LBFGS 

Figure 1: MNIST classification (Left: loss convergence; Right: classification 

accuracy) with overlapping Schwarz decomposition of 1-3 overlapped layers; the 

convergence rate is improved as overlap size increases.

Figure 2: Comparison of PINN 

solutions of the Klein-Gordon 

equation optimized using Adam and 

LBFGS. The loss landscape shows 

that overlapping Schwarz 

decomposition converges much more 

rapidly.
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